Keywords

Squaraine dyes; j aggregation; aggreagtion in solid state

Abstract

Squaraine dyes have been the subject of intensive studies due their unusual electronic properties that make them good candidates for a wide range of applications in various technological fields. They are particularly promising in nonlinear optics, bioimaging for labeling and sensing of biomolecules, as sensitizers for solar energy harvesting in solar cells and organic photovoltaics, two-photon absorbing materials, near-infrared (NIR) emitting fluorescent probes, second harmonic generation organic dyes, and sensitizers for photodynamic therapy among others. In this dissertation, the aggregation behaviors and features of several squaraine dye derivatives in solid state thin films were studied and reported. In the first chapter of the dissertation, three squaraine dye derivatives with two and four hydroxy groups and with different N-alkyl amino donor substituents were synthesized and used as models to study aggregation behavior. Their UV-vis absorption, thermal properties, and photoluminescence properties were determined. The models with four hydroxy substituents exhibited higher thermal stability and melt at higher temperature compared to the dye with only two hydroxy substituents due to increased hydrogen bonding. The UV-vis absorption and photoluminescence properties in liquid solution at room temperature were found to be similar. In the second chapter, the squaraine dyes, 2,4-bis [4-(N,N-di-n-pentylamino)-2-hydroxyphenyl] squaraine [SQC5(OH)2], 2,4-bis [4-(N,N-di-n-pentylamino)-2,4-hydroxyphenyl] squaraine [SQC5(OH)4 n], and 2,4-bis [4-(N,N-di-isopentylamino)-2,4-hydroxyphenyl] squaraine [SQC5(OH)4 b], where "n" and "b" stand for normal or linear and branched alkyl groups, respectively, were investigated to study their aggregation in solid state thin film form using UV-vis absorption spectroscopy. The investigation revealed significant differences in aggregation behaviors and features. The dye SQC5(OH)2 mainly exhibited J-type aggregation with an intense absorption band in the NIR region. In contrast, the SQC5(OH)4 n and SQC5(OH)4 b compounds mainly exhibited H-type aggregation, characterized by less intense and blue shifted absorption bands. The third chapter presents the kinetic study conducted on the squaraine dye derivative 2,4-bis [4-(N,N-di-n-pentylamino)-2-hydroxyphenyl] squaraine [SQC5(OH)2] in solid state spin-coated thin films. The study revealed the formation of J-aggregates with bands at 767 nm at room temperature. This aggregate was temperature dependent. It was transformed into H-aggregates as the temperature increased. The activation energy of the decay (transformation) process was found to be 91.2 kJ. The values of ΔH and ΔS are 88.4 kJ/mol and 48.2 J/K.mol, respectively, indicating the J-aggregate of SQC5(OH)2 was a kinetic product while the H-aggregate was thermondynamically more stable.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2015

Semester

Summer

Advisor

Belfield, Kevin

Degree

Doctor of Philosophy (Ph.D.)

College

College of Sciences

Department

Chemistry

Degree Program

Chemistry

Format

application/pdf

Identifier

CFE0005778

URL

http://purl.fcla.edu/fcla/etd/CFE0005778

Language

English

Release Date

August 2020

Length of Campus-only Access

5 years

Access Status

Doctoral Dissertation (Campus-only Access)

Subjects

Dissertations, Academic -- Sciences; Sciences -- Dissertations, Academic

Share

COinS