Keywords

Material science engineering, metallurgy, uranium, molybdenum, zirconium, phase transformation, microstructural evolution

Abstract

The Reduced Enrichment for Research and Test Reactor (RERTR) now known as the Material Minimization and Management Reactor Control program (MMMRC) seeks to replace the use of highly enriched uranium (HEU) fuels used in research and test nuclear reactors around the world. The low enriched uranium (LEU) fuels must have fissionable uranium densities comparable to the HEU fuels. After extensive investigation by various researchers around the world, the U-Mo alloys were selected as a promising candidate. The Mo alloyed with U allows for the stabilization of the face-centered cubic ?-U phase, which demonstrated favorable irradiation behavior. However, deleterious diffusional interaction between the fuel and the cladding, typically Al-base alloy, remain a challenge to overcome for application of U-Mo alloys as the LEU fuel. Zr has been identified as a potential diffusion barrier between monolithic U-10 wt.% Mo (U10Mo) metallic fuel and AA6061 cladding alloys for the development of a LEU fuel system. However, interdiffusion and reaction between the Zr barrier and U10Mo fuel can produce phases such as Mo2Zr, and promote the destabilization of ?-U phase into ?'-U (U2Mo) and ?-U. In order to better understand this phenomenon, this study examined the phases that are present in the U10Mo alloys with varying Zr concentration, 0, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0 wt.% at room temperature after heat treatment at 900°C for 168 hours and 650°C for 3 hours. These two temperatures are relevant to fuel plate fabrication process of homogenization and hot-rolling, respectively. Scanning electron microscopy and X-ray diffraction were employed to identify and quantitatively document the constituent phases and microstructure to elucidate the nature of phase transformations. For U10Mo alloys containing less than 1.0 wt.% Zr, there was no significant formation of Mo2Zr after 900?C homogenization and subsequent heat treatment at 650?C for 3 hours. The ?-U phase also remained stable correspondingly for these alloys containing less than 1.0 wt.% Zr. For U10Mo alloys containing 2 wt.% or more Zr, a significant amount of Mo2Zr formation was observed after 900?C homogenization and subsequent heat treatment at 650?C for 3 hours. For these alloys, destabilization of ?-U into ?'-U (U2Mo), UZr2 and ?-U was observed. The alloy containing 20 wt.% Zr, however, did not demonstrate ?-U decomposition even though Mo2Zr was observed after heat treatments. The formation of Mo2Zr effectively reduced the stability of the metastable ?-U phase by depleting the ?-stabilizing Mo. The destabilization of ?-U phase into the ?-U phase is not favorable due to anisotropic and poor irradiation behavior of ?-U phase. Therefore the formation of Mo2Zr at the interface between U10Mo fuel and Zr diffusion barrier must be carefully controlled during the fabrication of monolithic LEU fuel system for successful implementation.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2015

Semester

Fall

Advisor

Sohn, Yongho

Degree

Master of Science in Materials Science and Engineering (M.S.M.S.E.)

College

College of Engineering and Computer Science

Department

Materials Science Engineering

Degree Program

Materials Science & Engineering

Format

application/pdf

Identifier

CFE0005943

URL

http://purl.fcla.edu/fcla/etd/CFE0005943

Language

English

Release Date

December 2015

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science; Engineering and Computer Science -- Dissertations, Academic

Share

COinS