Keywords

Conveying machinery, Genetic algorithms, Plant layout, Queuing theory

Abstract

With the ongoing technology battles and price wars in today's competitive economy, every company is looking for an advantage over its peers. A particular choice of facility layout can have a significant impact on the ability of a company to maintain lower operational expenses under uncertain economic conditions. It is known that systems with less congestion have lower operational costs. Traditionally, manufacturing facility layout problem methods aim at minimizing the total distance traveled, the material handling cost, or the time in the system (based on distance traveled at a specific speed). The proposed methodology solves the looped layout design problem for a looped layout manufacturing facility with a looped conveyor material handling system with shortcuts using a system performance metric, i.e. the work in process (WIP) on the conveyor and at the input stations to the conveyor, as a factor in the minimizing function for the facility layout optimization problem which is solved heuristically using a permutation genetic algorithm. The proposed methodology also presents the case for determining the shortcut locations across the conveyor simultaneously (while determining the layout of the stations around the loop) versus the traditional method which determines the shortcuts sequentially (after the layout of the stations has been determined). The proposed methodology also presents an analytical estimate for the work in process at the input stations to the closed looped conveyor. It is contended that the proposed methodology (using the WIP as a factor in the minimizing function for the facility layout while simultaneously solving for the shortcuts) will yield a facility layout which is less congested than a facility layout generated by the traditional methods (using the total distance traveled as a factor of the minimizing function for the facility layout while sequentially solving for the shortcuts). The proposed methodology is tested on a virtual 300mm Semiconductor Wafer Fabrication Facility with a looped conveyor material handling system with shortcuts. The results show that the facility layouts generated by the proposed methodology have significantly less congestion than facility layouts generated by traditional methods. The validation of the developed analytical estimate of the work in process at the input stations reveals that the proposed methodology works extremely well for systems with Markovian Arrival Processes.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2011

Semester

Fall

Advisor

Nazzal, Dima

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Industrial Engineering and Management Systems

Degree Program

Industrial Engineering

Format

application/pdf

Identifier

CFE0004125

URL

http://purl.fcla.edu/fcla/etd/CFE0004125

Language

English

Release Date

December 2011

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic

Share

COinS