Keywords

Linear modulator, injection locking, injection locked semiconductor laser, vcsel, phase detector, channel filter

Abstract

This dissertation details the work has been done on a novel resonant cavity linear interferometric modulator and a direct phase detector with channel filtering capability using injection-locked semiconductor lasers for applications in RF photonics. First, examples of optical systems whose performance can be greatly enhanced by using a linear intensity modulator are presented and existing linearized modulator designs are reviewed. The novel linear interferometric optical intensity modulator based on an injection-locked laser as an arcsine phase modulator is introduced and followed by numerical simulations of the phase and amplitude response of an injection-locked semiconductor laser. The numerical model is then extended to study the effects of the injection ratio, nonlinear cavity response, depth of phase and amplitude modulation on the spur-free dynamic range of a semiconductor resonant cavity linear modulator. Experimental results of the performance of the linear modulator implemented with a multi-mode Fabry-Perot semiconductor laser as the resonant cavity are shown and compared with the theoretical model. The modulator performance using a vertical cavity surface emitting laser as the resonant cavity is investigated as well. Very low Vπ in the order of 1 mV, multi-gigahertz bandwidth (-10 dB bandwidth of 5 GHz) and a spur-free dynamic range of 120 dB.Hz2/3 were measured directly after the modulator. The performance of the modulator in an analog link is experimentally investigated and the results show no degradation of the modulator linearity after a 1 km of SMF. The focus of the work then shifts to applications of an injection-locked semiconductor laser as a direct phase detector and channel filter. This phase detection technique does not iv require a local oscillator. Experimental results showing the detection and channel filtering capability of an injection-locked semiconductor diode laser in a three channel system are shown. The detected electrical signal has a signal-to-noise ratio better than 60 dB/Hz. In chapter 4, the phase noise added by an injection-locked vertical cavity surface emitting laser is studied using a self-heterodyne technique. The results show the dependency of the added phase noise on the injection ratio and detuning frequency. The final chapter outlines the future works on the linear interferometric intensity modulator including integration of the modulator on a semiconductor chip and the design of the modulator for input pulsed light.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2012

Semester

Summer

Advisor

Delfyett, Peter

Degree

Doctor of Philosophy (Ph.D.)

College

College of Optics and Photonics

Department

Optics and Photonics

Degree Program

Optics

Format

application/pdf

Identifier

CFE0004385

URL

http://purl.fcla.edu/fcla/etd/CFE0004385

Language

English

Release Date

August 2012

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Subjects

Dissertations, Academic -- Optics and Photonics, Optics and Photonics -- Dissertations, Academic

Share

COinS