Phosphatidylserine, caffeine, reaction time, cognition, cognitive function, mood, resistance exercise, protein kinase c, neurons, differentiation, proliferation, serial subtraction test, profile of mood state (poms), dynavision, phospholipid, supplementation


Phosphatidylserine (PS) is an endogenously occurring phospholipid that has been shown to have cognition and mood enhancing properties in humans, possibly through its role as an enzyme co-factor in cellular signal transduction. Specifically, PS has been identified as activator of classical isoforms of protein kinase C, an enzyme known to be involved in the growth and differentiation of neural cells, and is therefore thought to play a role in the protection of neurons. The purpose of this study was to examine the effects of supplementation with PS and caffeine on measures of cognition, reaction time and mood prior to and following an exercise stress. Twenty, healthy, resistance trained males (17) and females (3) (mean ± SD; age: 22.75 ± 3.27 yrs; height: 177.03 ± 8.44cm; weight: 78.98 ± 11.24kg; body fat%: 14.28 ± 6.6), volunteered to participate in this randomized, double-blind, placebo-controlled study. Participants were assigned to a PS group (400mg/day PS; 100mg/day caffeine, N=9) or PL (16g/day Carbs, N=11) delivered in the form of 4 candy chews identical in size, shape and color. Subjects performed an acute bout of full body resistance exercise, prior to (T1) and following 14 days of supplementation (T2). Measures of reaction time (Dynavision® D2 Visuomotor Training Device), cognition (Serial Subtraction Test, SST), and mood (Profile of Mood States, POMS) were assessed immediately before and following resistance exercise in both T1 and T2. Data was analyzed using two-way ANCOVA and repeated measures ANOVA. Supplementation with 400mg PS and 100mg caffeine did not have a significant impact upon measures of reaction time or cognition between groups at baseline or following acute resistance exercise. However, there was a non-significant trend to the attenuation of fatigue iv between groups, following acute resistance exercise (p = 0.071). Interestingly, our data suggests that acute resistance exercise alone may improve cognitive function. Although more research is necessary regarding optimal dosage and supplementation duration, the current findings suggest that supplementation 400mg/day PS with 100mg/day caffeine may attenuate fatigue following acute resistance exercise. It is possible that the lack of significance may be the result of both an inhibition of the PS activated pathway and a withdrawal effect from caffeine.


If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at

Graduation Date





Hoffman, Jay


Master of Science (M.S.)


College of Education and Human Performance


Child, Family, and Community Sciences

Degree Program

Sport and Exercise Sciences; Applied Exercise Physiology








Release Date

August 2012

Length of Campus-only Access


Access Status

Masters Thesis (Open Access)


Dissertations, Academic -- Education, Education -- Dissertations, Academic