Keywords

Alanine glutamine, running performance, electrolytes, electromyography

Abstract

The purpose of this study was to compare the efficacy of two dose levels of L-Alanyl-LGlutamine in a commercially available sports drink to the sports drink only on time to exhaustion, neuromuscular fatigue and physiological measures during prolonged endurance exercise. Twelve endurance-trained males (23.5±3.7 yrs; 175.5±5.4 cm; 70.7±7.6 kg) performed four trials, each consisting of 1 hr treadmill runs at 75% of VO2peak followed by a run to exhaustion at 90% of VO2peak. The trials differed in type of hydration. One trial consisted of no hydration (NHY), another required ingestion of only a sports drink (ET), and two trials required ingestion of a low dose (LD) (300 mg∙500 ml-1) and high dose (HD) of L-Alanyl-L-Glutamine (1 g∙500 ml-1) mixed in the sports drink. During the fluid ingestion trials 250 ml were consumed every 15 min. Plasma glutamine, glucose, electrolytes, and osmolality were measured prior to the run (PRE), and at 30, 45, and 60 min. VO2, RQ, and HR were measured every 15 min and surface electromyography (EMG) of the vastus lateralis and rectus femoris were measured every 10 min during the 1 hr run. Time to exhaustion was significantly longer during the LD and HD trials compared with NHY. Plasma glutamine concentrations were significantly elevated at 45 min in LD and HD trials, and remained elevated at 60 min during HD. Sodium concentrations increased with the beginning of exercise and remained stable for the duration of the 1 hr run. At 60 min plasma sodium was significantly lower in all trials compared with NHY. The results from this study indicated that ingestion of the alanine-glutamine dipeptide at either the low or high dose significantly improved time to exhaustion during high intensity exercise compared to a no hydration trial. These differences were not noted between ET and NHY.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2014

Semester

Spring

Advisor

Hoffman, Jay

Degree

Doctor of Philosophy (Ph.D.)

College

College of Education and Human Performance

Department

Dean's Office, Education

Degree Program

Education; Exercise Physiology Track

Format

application/pdf

Identifier

CFE0005209

URL

http://purl.fcla.edu/fcla/etd/CFE0005209

Language

English

Release Date

May 2014

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Subjects

Dissertations, Academic -- Education and Human Performance, Education and Human Performance -- Dissertations, Academic

Share

COinS