Keywords

endwall film cooling, pressure gradient effects, wake effects, film cooling

Abstract

Endwall film cooling is a necessity in modern gas turbines for safe and reliable operation. Performance of endwall film cooling is strongly influenced by the hot gas flow field, among other factors. For example, aerodynamic design determines secondary flow vortices such as passage vortices and corner vortices in the endwall region. Moreover blockage presented by the leading edge of the airfoil subjects the incoming flow to a stagnating pressure gradient leading to roll-up of the approaching boundary layer and horseshoe vortices. In addition, for a number of heavy frame power generation gas turbines that use cannular combustors, the hot and turbulent gases exiting from the combustor are delivered to the first stage vane through transition ducts. Wakes induced by walls separating adjacent transition ducts located upstream of first row vanes also influence the entering main gas flow field. Furthermore, as hot gas enters vane passages, it accelerates around the vane airfoils. This flow acceleration causes significant streamline curvature and impacts lateral spreading endwall coolant films. Thus endwall flow field, especially those in utility gas turbines with cannular combustors, is quite complicated in the presence of vortices, wakes and strong favorable pressure gradient with resulting flow acceleration. These flow features can seriously impact film cooling performance and make difficult the prediction of film cooling in endwall. This study investigates endwall film cooling under the influence of pressure gradient effects due to stagnation region of an axisymmetric airfoil and in mainstream favorable pressure gradient. It also investigates the impact of wake on endwall film cooling near the stagnation region of an airfoil. The investigation consists of experimental testing and numerical simulation. Endwall film cooling effectiveness is investigated near the stagnation region on an airfoil by placing an axisymmetric airfoil downstream of a single row of inclined cylindrical holes. The holes are inclined at 35° with a length-to-diameter ratio of 7.5 and pitch-to-diameter ratio of 3. The ratio of leading edge radius to hole diameter and the ratio of maximum airfoil thickness to hole diameter are 6 and 20 respectively. The distance of the leading edge of the airfoil is varied along the streamwise direction to simulate the different film cooling rows preceding the leading edge of the airfoil. Wake effects are induced by placing a rectangular plate upstream of the injection point where the ratio of plate thickness to hole diameter is 6.4, and its distance is also varied to investigate the impact of strong and mild wake on endwall film cooling effectiveness. Blowing ratio ranged from 0.5 to 1.5. Film cooling effectiveness is also investigated under the presence of mainstream pressure gradient with converging main flow streamlines. The streamwise pressure distribution is attained by placing side inserts into the mainstream. The results are presented for five holes of staggered inclined cylindrical holes. The inclination angle is 30° and the tests were conducted at two Reynolds number, 5000 and 8000. Numerical analysis is employed to aid the understanding of the mainstream and coolant flow interaction. The solution of the computational domain is performed using FLUENT software package from Fluent, Inc. The use of second order schemes were used in this study to provide the highest accuracy available. This study employed the Realizable º-µ model with enhance wall treatment for all its cases. Endwall temperature distribution is measured using Temperature Sensitive Paint (TSP) technique and film cooling effectiveness is calculated from the measurements and compared against numerical predictions. Results show that the characteristics of average film effectiveness near the stagnation region do not change drastically. However, as the blowing ratio is increased jet to jet interaction is enhanced due to higher jet spreading resulting in higher jet coverage. In the presence of wake, mixing of the jet with the mainstream is enhanced particularly for low M. The velocity deficit created by the wake forms a pair of vortices offset from the wake centerline. These vortices lift the jet off the wall promoting the interaction of the jet with the mainstream resulting in a lower effectiveness. The jet interaction with the mainstream causes the jet to lose its cooling capabilities more rapidly which leads to a more sudden decay in film effectiveness. When film is discharged into accelerating main flow with converging streamlines, row-to-row coolant flow rate is not uniform leading to varying blowing ratios and cooling performance. Jet to jet interaction is reduced and jet lift off is observed for rows with high blowing ratio resulting in lower effectiveness.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2008

Advisor

Kapat, Jayanta

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Mechanical, Materials and Aerospace Engineering

Degree Program

Mechanical Engineering

Format

application/pdf

Identifier

CFE0002425

URL

http://purl.fcla.edu/fcla/etd/CFE0002425

Language

English

Release Date

December 2008

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS