Keywords

TDLAS, WMS, narrow channels, laser diagnostics, species concentration, PEMFC

Abstract

A novel method has been implemented for measuring the concentration of gas species, water vapor and carbon dioxide, within a narrow channel flow field non-invasively using tunable diode laser absorption spectroscopy (TDLAS) in conjunction with a laser modulated at a high frequency [Wavelength Modulation Spectroscopy (WMS)] tuned to the ro-vibrational transition of the species. This technique measures the absorption profile which is a strong function of the species concentration across short path lengths and small time spans, as in PEM fuel cells during high load cycles. This method has been verified in a transparent circular flow 12 cm path length and a 12 mm rectangular flow channel. Distinct absorption peaks for water vapor and carbon dioxide have been identified, and concentrations of water vapor and carbon dioxide within the test cells have been measured in situ with high temporal resolutions. A comparison of the full width at half maximum (FWHM) of the absorption lineshapes to the partial pressure of water vapor and carbon dioxide showed a predominantly linear relationship, except in the lower partial pressure regions. Test section temperature was observed to have very minimal impact on these curves at low partial pressure values. A porous media like a membrane electrode assembly (MEA) similar to those used in PEM fuel cells sandwiched between two rectangular flow channels was also tested. Some of the scattered radiation off the MEA was observed using a photodiode at high gain, allowing for more localized species detection. The technique was used to monitor the humidity on either side of the MEA during both temperature controlled and super-saturated conditions. The measurements were observed to be repeatable to within 10 %.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2009

Advisor

Basu, Saptarshi

Degree

Master of Science in Aerospace Engineering (M.S.A.E.)

College

College of Engineering and Computer Science

Department

Mechanical, Materials and Aerospace Engineering

Degree Program

Aerospace Engineering

Format

application/pdf

Identifier

CFE0002805

URL

http://purl.fcla.edu/fcla/etd/CFE0002805

Language

English

Release Date

September 2009

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS