Keywords

Ultrafast optics, nonlinear optics

Abstract

Laser filamentation is a highly complex and dynamic nonlinear process that is sensitive to many physical parameters. The basic properties that define a filament consist of (i) a narrow, high intensity core that persists for distances much greater than the Rayleigh distance, (ii) a low density plasma channel existing within the filament core, and (iii) a supercontinuum generated over the course of filamentation. However, there remain many questions pertaining to how these basic properties are affected by changes in the conditions in which the filaments are formed; that is the premise of the work presented in this dissertation. To examine the effects of anomalous dispersion and of different multi-photon ionization regimes, filaments were formed in solids with different laser wavelengths. The results provided a better understanding of supercontinuum generation in the anomalous dispersion regime, and of how multi-photon ionization can affect the formation of filaments. Three different experiments were carried out on filamentation in air. The first was an investigation into the effects of geometrical focusing. A simplified theoretical model was derived to determine the transition of filamentation in the linear-focusing and nonlinear- focusing regimes. The second examined the effects of polarization on supercontinuum generation, where a polarization-dependent anomalous spectral broadening phenomenon due to molecular effects was identified. The third involved the characterization of filaments in the ultraviolet. The combination of physical mechanisms responsible for filamentation in the ultraviolet was found to be different from that in the near infrared.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2014

Semester

Fall

Advisor

Richardson, Martin

Degree

Doctor of Philosophy (Ph.D.)

College

College of Optics and Photonics

Department

Optics and Photonics

Degree Program

Optics and Photonics

Format

application/pdf

Identifier

CFE0005520

URL

http://purl.fcla.edu/fcla/etd/CFE0005520

Language

English

Release Date

December 2019

Length of Campus-only Access

5 years

Access Status

Doctoral Dissertation (Campus-only Access)

Subjects

Dissertations, Academic -- Optics and Photonics; Optics and Photonics -- Dissertations, Academic

Share

COinS