Keywords

Nanoindentation, Shape Memory Alloys, NiTi

Abstract

Near equi-atomic nickel titanium (NiTi) shape memory alloys (SMAs) are a class of materials characterized by their unique deformation behavior. In these alloys, deformation mechanisms such as mechanical twinning and stress induced phase transformation between a high symmetry phase (austenite) and a low symmetry phase (martensite) additionally occur and influence mechanical behavior and thus their functionality. Consequently, applications of SMAs usually call for precise phase transformation temperatures, which depend on the thermomechanical history and the composition of the alloy. Instrumented indentation, inherently a mechanical characterization technique for small sampling volumes, offers a cost effective means of empirically testing SMAs in the form of centimeter scaled buttons prior to large-scale production. Additionally, it is an effective probe for intricate SMA geometries (e.g., in medical stents, valves etc.), not immediately amenable to conventional mechanical testing. The objective of this work was to study the deformation behavior of NiTi SMAs using instrumented indentation. This involved devising compliance calibration techniques to account for instrument deformation and designing spherical diamond indenters. Substantial quantitative information related to the deformation behavior of the shape memory and superelastic NiTi was obtained for the first time, as opposed to existing qualitative indentation studies. For the case of shape memory NiTi, the elastic modulus of the B19' martensite prior to twinning was determined using spherical indentation to be about 101 GPa, which was comparable to the value from neutron diffraction and was substantially higher than typical values reported from extensometry (68 GPa in this case). Twinning at low stresses was observed from neutron diffraction measurements and was attributed to reducing the elastic modulus estimated by extensometry. The onset of predominantly elastic deformation of the twinned martensite was identified from the nanoindentation response and the elastic modulus of the twinned martensite was estimated to be about 17 GPa. Finite element modeling was used to validate the measurements. For the case of the superelastic NiTi, the elastic modulus of the parent austenite was estimated to be about 62 GPa. The onset of large-scale stress induced martensite transformation and its subsequent elastic deformation were identified from the nanoindentation response. The effect of cycling on the mechanical behavior of the NiTi specimen was studied by repeatedly indenting at the same location. An increase in the elastic modulus value for the austenite and a decrease in the associated hysteresis and residual depth after the initial few cycles followed by stabilization were observed. As for the case of shape memory NiTi, finite element modeling was used to validate the measurements. This work has initiated a methodology for the quantitative evaluation of shape memory and superelastic NiTi alloys with instrumented spherical indentation. The aforementioned results have immediate implications for optimizing thermomechanical processing parameters in prototype button melts and for the mechanical characterization of intricate SMA geometries (e.g., in medical stents, valves etc.) This work was made possible by grants from NASA (NAG3-2751) and NSF (CAREER DMR-0239512) to UCF.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2005

Semester

Summer

Advisor

Vaidyanathan, Rajan

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Mechanical, Materials and Aerospace Engineering

Degree Program

Materials Science and Engineering

Format

application/pdf

Identifier

CFE0000652

URL

http://purl.fcla.edu/fcla/etd/CFE0000652

Language

English

Release Date

August 2006

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS