Abstract

Internet of Things (IoT) is a new vision of an integrated network covering physical objects that are able to collect and exchange data. It enables previously unconnected devices and objects to become connected using equipping devices with communication technology such as sensors and radio frequency identification tags (RFID). As technology progresses towards new paradigm such as IoT, there is a need for an approach to identify the significance of these projects. Conventional simulation modeling and data analysis approaches are not able to capture the system complexity or suffer from a lack of data needed that can help to build a prediction. Agent-based Simulation (ABM) proposes an efficient simulation scheme to capture the structure of this dimension and offer a potential solution. Two case studies were proposed in this research. The first one introduces a conceptual case study addressing the use of agent-based simulations to verify the effectiveness of the business model of IoT. The objective of the study is to assess the feasibility of such application, of the market in the city of Orlando (Florida, United States). The second case study seeks to use ABM to simulate the operational behavior of refrigeration units (7,420) in one of largest retail organizations in Saudi Arabia and assess the economic feasibility of IoT implementation by estimating the return on investment (ROI).

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2017

Semester

Fall

Advisor

Rabelo, Luis

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Industrial Engineering and Management Systems

Degree Program

Industrial Engineering

Format

application/pdf

Identifier

CFE0006855

URL

http://purl.fcla.edu/fcla/etd/CFE0006855

Language

English

Release Date

December 2018

Length of Campus-only Access

1 year

Access Status

Doctoral Dissertation (Campus-only Access)

Share

COinS