Abstract

In the past several MRI compatible robotic needle guide devices for targeted prostate biopsy have been developed. The large and complex structure have been identified as the major limitations of those devices. Such limitations, in addition to complex steps for device to image registration have prevented widespread implementation of MRI-guided prostate biopsy despite the advantages of MRI compared to TRUS. We have designed a compact MRI-guided robotic intervention with the capability to have angulated insertion to avoid damage to any anatomical feature along the needle path. The system consists of a novel mechanism driven Robotic Needle Guide (RNG). The RNG is a 4-DOF robotic needle manipulator mounted on a Gross Positioning Module (GPM), which is locked on the MRI table. The RNG consists of four parallel stacked disks with an engraved profile path. The rotary motion and positioning of the discs at an angle aids in guiding the biopsy needle. Once a clinician selects a target for needle insertion, the intervention provides possible insertion angles. Then, the most suitable angle is selected by the clinician based on the safest trajectory. The selected target and insertion angle are then computed as control parameters of RNG i.e. the discs are then rotated to the required angle. Insertion is followed by quick confirmation scans to ascertain needle position at all times.

Graduation Date

2018

Semester

Spring

Advisor

Song, Sang-Eun

Degree

Master of Science in Mechanical Engineering (M.S.M.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering; Mechanical Systems Track

Format

application/pdf

Identifier

CFE0007116

URL

http://purl.fcla.edu/fcla/etd/CFE0007116

Language

English

Release Date

May 2018

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS