Abstract

One of the fundamental mechanisms for detonation initiation is turbulence driven deflagration to detonation transition (TDDT). The research experimentally explores the propagation dynamics demonstrated by fast deflagrated flames interacting with highly turbulent reactants. Fast flames produce extremely high turbulent flame speeds values, increased levels of compressibility and develop a runaway mechanism that leads to TDDT. The flame structural dynamics and reacting flow field are characterized using simultaneous high-speed particle image velocimetry, chemiluminescence, and Schlieren measurements. The investigation classifies the fast flame propagation modes at various regimes. The study further examines the conditions for a turbulent fast flame at the boundary of transitioning to quasi-detonation. The evolution of the flame-compressibility interactions for this turbulent fast flame is characterized. The local measured turbulent flame speed is found to be greater than the Chapman–Jouguet deflagration flame speed which categorizes the flame to be at the spontaneous transition regime and within the deflagration-to-detonation transition runaway process.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2018

Semester

Spring

Advisor

Ahmed, Kareem

Degree

Master of Science in Mechanical Engineering (M.S.M.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering; Thermo-Fluids

Format

application/pdf

Identifier

CFE0006985

URL

http://purl.fcla.edu/fcla/etd/CFE0006985

Language

English

Release Date

May 2023

Length of Campus-only Access

5 years

Access Status

Masters Thesis (Campus-only Access)

Share

COinS