Atis, its, har, cbras, fdot, dms, cati, fih, fte


The goal of this thesis is to evaluate travelers' experience with Highway Advisory Radio (HAR) and Citizens' Band Radio Advisory System (CBRAS) technologies on both Florida Interstate Highway system (FIH) and the Florida Turnpike Enterprise (FTE) toll roads. To achieve this goal, two different survey tools were used. The first tool is a random digit dialing phone survey known as CATI (Computer-Assisted Telephone Interviewing). The second tool is a field survey that intercepts travelers at the Florida Turnpike Enterprise (FTE) service plazas and the Florida Interstate Highway (FIH) rest areas. HAR and CBRAS are traditional components of the Advanced Traveler Information Systems (ATIS). This thesis pays special attention to the effectiveness of HAR and CBRAS in improving travelers' experience. Feedback to analyze these two technologies was collected via a telephonic survey and a field survey. Two different field surveys (one for HAR and one for CBRAS) were designed and implemented to obtain feedback on these technologies. The field survey for CBRAS is unique and has never been done before for this purpose. A sample size of 1000 HAR surveys was collected through the CATI phone survey. Field surveys were collected at five locations across the state, including central, southeast, and southwest regions of Florida. The HAR field survey sample size was 1610 and the CBRAS field survey sample size was 613. All field surveys were conducted by UCF students at each of the five locations, over a 13-week data collection period. The HAR messages were designed to alert drivers of any adverse roadway traffic or weather conditions. The CBRAS is limited to truck drivers with the closed system radio pre-installed in their vehicles. However, truck drivers were also asked some questions on HAR if they do not use CBRAS. Basic statistical analysis was used to determine a number of performance indicators which include system's use and awareness, usability of provided information, route diversion, and travelers' demographics. In addition, the two HAR phone and field samples were combined together and examined using a decision tree model. Target questions were selected from the survey to build the tree network. The tree model aimed at identifying trends between categorical differences of travelers with respect to specific questions. Understanding travelers' satisfaction with HAR is critical to knowing its benefits. The ending results indicated that both basic statistical analysis and the decision tree model are in agreement. A comparison between HAR phone and field surveys indicates the following. Travelers interviewed for the HAR field survey were more aware of the HAR than travelers surveyed by phone. A small portion of the surveyed samples used HAR (22% and this was consistent between the phone and the field surveys). Also, 80% or more were satisfied with HAR for both phone and field samples and the majority (85% or more) supported its continuation as an indication of willingness to use it in the future, especially in emergency conditions. In terms of the types of messages they want to hear from HAR, traffic congestion was the most common. Dynamic Message Signs (DMS) were the most preferred source of travel information and were the alternative for HAR, if HAR gets terminated. This was followed by smartphone applications which received twice as much support from field surveyed travelers (28%) when compared to phone surveyed travelers (15%). The CATI Phone Survey was biased towards elderly people (60% of the sample) and mainly females (58%) that use the FTE roadway system. Users satisfied with the system are those who only use these roadways once per week or less. The survey ultimately shows that travelers rely on modern modes of obtaining traffic information than traditional ones, such as HAR. DMS, and smart phone applications are leading communication tools among all type of travelers. The HAR field survey was less biased with respect to age and gender distribution (56% were under 50 and 62% were males). Both surveys indicate that the sample is well educated (about 60% have an associate degree or higher). CBRAS serves a small segment of commercial truck drivers (only 12% out of 613 used CBRAS). However, this small segment used it heavily (84% used it sometimes, often, or always). And 92% of CBRAS users were satisfied or strongly satisfied with it. CBRAS was used mostly for route divergence, with 72% of the drivers relying on it for this purpose. Truck drivers who never used CBRAS (88% of the sample) were asked questions about HAR. Only 27% of them used HAR and 57% of these used it sometimes, often, or always with 72% of the truck users being satisfied with HAR compared to the 92% satisfied with CBRAS. The most common complaint about HAR by truck drivers was that it is not easy to access or understand. Based on responses of truck drivers for both HAR and CBRAS field surveys above, it seems that GPS navigation was the most preferred source of travel information (28%). In addition to the basic statistics, a decision tree model, using SAS Enterprise Miner was performed. The statistical analysis results indicated satisfaction of travelers. The decision tree model was used to predict and profile responses to all answered questions that each survey shared. Training data was included in the model and the model was able to leverage the questions. Results of the decision tree model predicted high user satisfaction rates. Analyses of the three implemented surveys show that HAR and CBRAS technologies are not used by a large proportion of travelers, but their users are typically satisfied with these technologies. A small portion of the surveyed sample of truck drivers uses CBRAS but they use it heavily and were very satisfied with it. The travelers' satisfaction level with HAR was high. The HAR and CBRAS systems are in the middle of a heated competition lead by digital communication, it may be a sign of the time to create HAR/CBRAS smart phone applications for the longevity of these traditional technologies.


If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at

Graduation Date





Al-Deek, Haitham


Master of Science (M.S.)


College of Engineering and Computer Science


Civil, Environmental, and Construction Engineering

Degree Program

Civil Engineering; Transportation System Engineering








Release Date

November 2016

Length of Campus-only Access

1 year

Access Status

Masters Thesis (Open Access)


Dissertations, Academic -- Engineering and Computer Science; Engineering and Computer Science -- Dissertations, Academic