Motion Estimation (ME) technique plays a key role in the video coding systems to achieve high compression ratios by removing temporal redundancies among video frames. Especially in the newest H.264/AVC video coding standard, ME engine demands large amount of computational capabilities due to its support for wide range of different block sizes for a given macroblock in order to increase accuracy in finding best matching block in the previous frames. We propose scalable architecture for H.264/AVC Variable Block Size (VBS) Motion Estimation with adaptive computing capability to support various search ranges, input video resolutions, and frame rates. Hardware architecture of the proposed ME consists of scalable Sum of Absolute Difference (SAD) arrays which can perform Full Search Block Matching Algorithm (FSBMA) for smaller 4x4 blocks. It is also shown that by predicting motion activity and adaptively adjusting the Search Range (SR) on the reconfigurable hardware platform, the computational cost of ME required for inter-frame encoding in H.264/AVC video coding standard can be reduced significantly. Dynamic Partial Reconfiguration is a unique feature of Field Programmable Gate Arrays (FPGAs) that makes best use of hardware resources and power by allowing adaptive algorithm to be implemented during run-time. We exploit this feature of FPGA to implement the proposed reconfigurable architecture of ME and maximize the architectural benefits through prediction of motion activities in the video sequences ,adaptation of SR during run-time, and fractional ME refinement. The implemented ME architecture can support real time applications at a maximum frequency of 90MHz with multiple reconfigurable regions. iv When compared to reconfiguration of complete design, partial reconfiguration process results in smaller bitstream size which allows FPGA to implement different configurations at higher speed. The proposed architecture has modular structure, regular data flow, and efficient memory organization with lower memory accesses. By increasing the number of active partial reconfigurable modules from one to four, there is a 4 fold increase in data re-use. Also, by introducing adaptive SR reduction algorithm at frame level, the computational load of ME is reduced significantly with only small degradation in PSNR (≤0.1dB).


If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date





Lee, Jooheung


Master of Science (M.S.)


College of Engineering and Computer Science


Electrical Engineering and Computer Science









Release Date

August 2010

Length of Campus-only Access


Access Status

Masters Thesis (Open Access)


Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic