Keywords

Magnetic bearing, vibration testing, friction, wind turbine

Abstract

Demands for sustainable energy have resulted in increased interest in wind turbines. Thus, despite widespread economic difficulties, global installed wind power increased by over 20% in 2011 alone. Recently, magnetic bearing technology has been proposed to improve wind turbine performance by mitigating vibration and reducing frictional losses. While magnetic bearing has been shown to reduce friction in other applications, little data has been presented to establish its effect on vibration and friction in wind turbines. Accordingly, this study provides a functional method for experimentally evaluating the effect of a magnetic bearing on the vibration and efficiency characteristics of a wind turbine, along with associated results and conclusions. The magnetic bearing under examination is a passive, concentric ring design. Vibration levels, dominant frequency components, and efficiency results are reported for the bearing as tested in two systems: a precision test fixture, and a small commercially available wind turbine. Data is also presented for a geometrically equivalent ball bearing, providing a benchmark for the magnetic bearing’s performance. The magnetic bearing is conclusively shown to reduce frictional losses as predicted by the original hypothesis. However, while reducing vibration in the precision test fixture, the magnetic bearing demonstrates increased vibration in the small wind turbine. This is explained in terms of the stiffness and damping of the passive test bearing. Thus, magnetic bearing technology promises to improve wind turbine performance, provided that application specific stiffness and damping characteristics are considered in the bearing design.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2012

Semester

Summer

Advisor

Lin, Kuo-Chi

Degree

Master of Science in Mechanical Engineering (M.S.M.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering; Computer Aided Mechanical Engineering

Format

application/pdf

Identifier

CFE0004452

URL

http://purl.fcla.edu/fcla/etd/CFE0004452

Language

English

Release Date

August 2012

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Subjects

Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic

Restricted to the UCF community until August 2012; it will then be open access.

Share

COinS