Keywords
Artificial intelligence, affective, cognitive, real time systems, computer managed instruction, intelligent tutoring systems
Abstract
Computer-based instructors, just like their human counterparts, should monitor the emotional and cognitive states of their students in order to adapt instructional technique. Doing so requires a model of student state to be available at run time, but this has historically been difficult. Because people are different, generalized models have not been able to be validated. As a person’s cognitive and affective state vary over time of day and seasonally, individualized models have had differing difficulties. The simultaneous creation and execution of an individualized model, in real time, represents the last option for modeling such cognitive and affective states. This dissertation presents and evaluates four differing techniques for the creation of cognitive and affective models that are created on-line and in real time for each individual user as alternatives to generalized models. Each of these techniques involves making predictions and modifications to the model in real time, addressing the real time datastream problems of infinite length, detection of new concepts, and responding to how concepts change over time. Additionally, with the knowledge that a user is physically present, this work investigates the contribution that the occasional direct user query can add to the overall quality of such models. The research described in this dissertation finds that the creation of a reasonable quality affective model is possible with an infinitesimal amount of time and without “ground truth” knowledge of the user, which is shown across three different emotional states. Creation of a cognitive model in the same fashion, however, was not possible via direct AI modeling, even with all of the “ground truth” information available, which is shown across four different cognitive states.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2013
Semester
Summer
Advisor
Gonzalez, Avelino
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Electrical Engineering and Computing
Degree Program
Computer Engineering
Format
application/pdf
Identifier
CFE0004822
URL
http://purl.fcla.edu/fcla/etd/CFE0004822
Language
English
Release Date
August 2013
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
Subjects
Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic
STARS Citation
Brawner, Keith, "Modeling Learner Mood In Realtime Through Biosensors For Intelligent Tutoring Improvements" (2013). Electronic Theses and Dissertations. 2608.
https://stars.library.ucf.edu/etd/2608