Recycled concrete aggregate, permeability of coarse aggregate, geotextile clogging, calcium carbonate


Recycled concrete aggregate (RCA) is often used as a replacement of virgin aggregate in road foundations (base course), embankments, hot-mix asphalt, and Portland cement concrete. However, the use of RCA in exfiltration drainage systems, such as French drains, is currently prohibited in many states of the U.S. The French drain system collects water runoff from the road pavement and transfers to slotted pipes underground and then filters through coarse aggregate and geotextile. The primary concerns with using RCA as a drainage media are the fines content and the precipitation of calcium carbonate to cause a reducing in filter fabric permittivity. Additional concerns include the potential for rehydration of RCA fines. The performance of RCA as drainage material has not been evaluated by many researchers and the limited information limits its use. A literature review has been conducted on the available information related to RCA as drainage material. A survey was issued to the Departments of Transportation across the nation in regards to using RCA particularly in French drains. Some state highway agencies have reported the use of RCA as base course; however, no state reports the use of RCA in exfiltration drainage systems. This thesis describes the investigations on the performance of RCA as backfill material in French drains. RCA was tested for its physical properties including, specific gravity, unit weight, percent voids, absorption, and abrasion resistance. RCA cleaning/washing methods were also applied to evaluate the fines removal processes. The potential for RCA rehydration was iv evaluated by means of heat of hydration, pH, compressive strength, and setting time. The permeability of RCA was tested using the No. 4 gradation. Long term permeability testing was conducted to evaluate the tendency for geotextile clogging from RCA fines. Calcium carbonate precipitation was also evaluated and a procedure to accelerate the precipitation process was developed. The results show that RCA has a high abrasion value, that is, it is very susceptible to break down from abrasion during aggregate handling such as transportation, stockpiling, or placing. The most effective cleaning method was found to be pressure washing with agitation. RCA has not demonstrated the tendency to rehydrate and harden when mixed with water. The permeability test results show that the No. 4 gradation does not restrict the flow of water; the flow rate is highly dependent on the hydraulic system itself, however excessive fines can cause large reductions in permeability over time. It has been determined that No. 4 gradation of RCA can provide a suitable drainage media providing the RCA is properly treated before its use.


If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at

Graduation Date





Nam, Boo Hyun


Master of Science (M.S.)


College of Engineering and Computer Science


Civil, Environmental, and Construction Engineering

Degree Program

Civil Engineering; Structures and Geotechnical Engineering








Release Date

December 2013

Length of Campus-only Access


Access Status

Masters Thesis (Open Access)


Dissertations, Academic -- Engineering and Computer Science, Engineering and Computer Science -- Dissertations, Academic