Keywords

JFET, junction field, modeling, SPICE, capacitance, transistor

Abstract

A compact model for four-terminal (independent top and bottom gates) junction field-effect transistor (JFET) is presented in this dissertation. The model describes the steady-state characteristics with a unified equation for all bias conditions that provides a high degree of accuracy and continuity of conductance, which are important for predictive analog circuit simulations. It also includes capacitance and leakage equations. A special capacitance drop-off phenomenon at the pinch-off region is studies and modeled. The operations of the junction fieldeffect transistor (JFET) with an oxide top-gate and full oxide isolation are analyzed, and a semi-physical compact model is developed. The effects of the different modes associated with the oxide top-gate on the JFET steady-state characteristics of the transistor are discussed, and a single expression applicable for the description of the JFET dc characteristics for all operation modes is derived. The model has been implemented in Verilog-A and simulated in Cadence framework for comparison to experimental data measured at Texas Instruments.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2007

Semester

Spring

Advisor

Liou, Juin J.

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Electrical Engineering and Computer Science

Degree Program

Electrical Engineering

Format

application/pdf

Identifier

CFE0001553

URL

http://purl.fcla.edu/fcla/etd/CFE0001553

Language

English

Release Date

May 2007

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Restricted to the UCF community until May 2007; it will then be open access.

Share

COinS