#### Keywords

Topology, Stratified L-Filter, Lattice-Valued Convergence Structures, Categorical Properties

#### Abstract

This work can be roughly divided into two parts. Initially, it may be considered a continuation of the very interesting research on the topic of Lattice-Valued Convergence Spaces given by Jager [2001, 2005]. The alternate axioms presented here seem to lead to theorems having proofs more closely related to standard arguments used in Convergence Space theory when the Lattice is L = f0; 1g:Various Subcategories are investigated. One such subconstruct is shown to be isomorphic to the category of Lattice Valued Fuzzy Convergence Spaces defined and studied by Jager [2001]. Our principal category is shown to be a topological universe and contains a subconstruct isomorphic to the category of probabilistic convergence spaces discussed in Kent and Richardson [1996] when L = [0; 1]: Fundamental work in lattice-valued convergence from the more general perspective of monads can be found in Gahler [1995]. Secondly, diagonal axioms are defned in the category whose objects consist of all the lattice valued convergence spaces. When the latter lattice is linearly ordered, a diagonal condition is given which characterizes those objects in the category that are determined by probabilistic convergence spaces which are topological. Certain background information regarding filters, convergence spaces, and diagonal axioms with its dual are given in Chapter 1. Chapter 2 describes Probabilistic Convergence and associated Diagonal axioms. Chapter 3 defines Jager convergence and proves that Jager's construct is isomorphic to a bireáective subconstruct of SL-CS. Furthermore, connections between the diagonal axioms discussed and those given by Gahler are explored. In Chapter 4, further categorical properties of SL-CS are discussed and in particular, it is shown that SL-CS is topological, cartesian closed, and extensional. Chapter 5 explores connections between diagonal axioms for objects in the sub construct δ(PCS) and SL-CS. Finally, recommendations for further research are provided.

#### Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

#### Graduation Date

2007

#### Semester

Summer

#### Advisor

Richardson, Gary

#### Degree

Doctor of Philosophy (Ph.D.)

#### College

College of Sciences

#### Department

Mathematics

#### Degree Program

Mathematics

#### Format

application/pdf

#### Identifier

CFE0001715

#### URL

http://purl.fcla.edu/fcla/etd/CFE0001715

#### Language

English

#### Release Date

September 2007

#### Length of Campus-only Access

None

#### Access Status

Doctoral Dissertation (Open Access)

#### STARS Citation

Flores, Paul, "Categorical Properties Of Lattice-valued Convergence Spaces" (2007). *Electronic Theses and Dissertations*. 3159.

https://stars.library.ucf.edu/etd/3159