soil mositure retention curves, hydraulic conductivity, soil amendments, retention ponds


The vadose zone plays an important role in managing stormwater. Predicting the water balance and water movement is crucial in ground water remediation to keep water suitable for use. To aid in understanding soils ability to transmit and store water, soil and hydraulic properties were analyzed for soils in Marion County, Florida, and potential soil amendments. Soil and hydraulic properties were examined for two soil amendments and for the soils in Marion County, Florida, at the South Oak and the Hunter's Trace locations. The hydraulic properties measured were the soil moisture retention curve (SMRC) and saturated hydraulic conductivity (Ks). The soil properties measured were the particle-size distribution (PSD) and the specific gravity. From these, the bulk density and porosity were calculated. The SMRC corresponds to the water holding capacities, while the Ks corresponds to the soils ability to transmit water. Both are dependent on the soil properties. The SMRC for the soil amendments and native soils were developed in the laboratory using a Tempe Cell apparatus. In addition, the SMRC was measured in the field at the Hunter's Trace location with time domain reflectometry (TDR) and tensiometer equipment at three depths of 1-ft, 2-ft, and 3-ft over approximate a two month period. The SMRC obtained in the laboratory was compared to two analytical models, Brooks and Corey and van Genuchten, and to the field data. There is a strong correlation between the laboratory, analytical, and field SMRC for both South Oak and Hunter's Trace. In addition, there is a strong correlation between the laboratory SMRC and analytical models for the soil amendments. The Arya and Paris (AP) model, a pedotransfer function, was examined for its accuracy in predicting the SMRC for the soils at South Oak and Hunter's Trace, in addition to the soil amendments. Measuring the SMRC in the lab is a time consuming process; therefore, inferring the SMRC from textural and structural soil properties which are easier measured characteristics would be advantageous.


If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at

Graduation Date



Chopra, Manoj


Master of Science (M.S.)


College of Engineering and Computer Science


Civil and Environmental Engineering

Degree Program

Civil Engineering








Release Date

December 2008

Length of Campus-only Access


Access Status

Masters Thesis (Open Access)