free-form optics, radial basis functions, head-worn displays, optical system design


Compact and lightweight optical designs achieving acceptable image quality, field of view, eye clearance, eyebox size, operating across the visible spectrum, are the key to the success of next generation head-worn displays. The first part of this thesis reports on the design, fabrication, and analysis of off-axis magnifier designs. The first design is catadioptric and consists of two elements. The lens utilizes a diffractive optical element and the mirror has a free-form surface described with an x-y polynomial. A comparison of color correction between doublets and single layer diffractive optical elements in an eyepiece as a function of eye clearance is provided to justify the use of a diffractive optical element. The dual-element design has an 8 mm diameter eyebox, 15 mm eye clearance, 20 degree diagonal full field, and is designed to operate across the visible spectrum between 450-650 nm. 20% MTF at the Nyquist frequency with less than 3% distortion has been achieved in the dual-element head-worn display. An ideal solution for a head-worn display would be a single free-form surface mirror design. A single surface mirror does not have dispersion; therefore, color correction is not required. A single surface mirror can be made see-through by machining the appropriate surface shape on the opposite side to form a zero power shell. The second design consists of a single off-axis free-form mirror described with an x-y polynomial, which achieves a 3 mm diameter exit pupil, 15 mm eye relief, and a 24 degree diagonal full field of view. The second design achieves 10% MTF at the Nyquist frequency set by the pixel spacing of the VGA microdisplay with less than 3% distortion. Both designs have been fabricated using diamond turning techniques. Finally, this thesis addresses the question of what is the optimal surface shape for a single mirror constrained in an off-axis magnifier configuration with multiple fields? Typical optical surfaces implemented in raytrace codes today are functions mapping two dimensional vectors to real numbers. The majority of optical designs to-date have relied on conic sections and polynomials as the functions of choice. The choice of conic sections is justified since conic sections are stigmatic surfaces under certain imaging geometries. The choice of polynomials from the point of view of surface description can be challenged. A polynomial surface description may link a designer s understanding of the wavefront aberrations and the surface description. The limitations of using multivariate polynomials are described by a theorem due to Mairhuber and Curtis from approximation theory. This thesis proposes and applies radial basis functions to represent free-form optical surfaces as an alternative to multivariate polynomials. We compare the polynomial descriptions to radial basis functions using the MTF criteria. The benefits of using radial basis functions for surface description are summarized in the context of specific head-worn displays. The benefits include, for example, the performance increase measured by the MTF, or the ability to increase the field of view or pupil size. Even though Zernike polynomials are a complete and orthogonal set of basis over the unit circle and they can be orthogonalized for rectangular or hexagonal pupils using Gram-Schmidt, taking practical considerations into account, such as optimization time and the maximum number of variables available in current raytrace codes, for the specific case of the single off-axis magnifier with a 3 mm pupil, 15 mm eye relief, 24 degree diagonal full field of view, we found the Gaussian radial basis functions to yield a 20% gain in the average MTF at 17 field points compared to a Zernike (using 66 terms) and an x-y polynomial up to and including 10th order. The linear combination of radial basis function representation is not limited to circular apertures. Visualization tools such as field map plots provided by nodal aberration theory have been applied during the analysis of the off-axis systems discussed in this thesis. Full-field displays are used to establish node locations within the field of view for the dual-element head-worn display. The judicious separation of the nodes along the x-direction in the field of view results in well-behaved MTF plots. This is in contrast to an expectation of achieving better performance through restoring symmetry via collapsing the nodes to yield field-quadratic astigmatism.


If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at

Graduation Date



Rolland, Jannick


Doctor of Philosophy (Ph.D.)


College of Optics and Photonics


Optics and Photonics

Degree Program









Release Date

December 2008

Length of Campus-only Access


Access Status

Doctoral Dissertation (Open Access)