In today's world, the healthcare sector is facing challenges to improve the efficiency and effectiveness of its operations. More and more improvement projects are being adopted to enhance healthcare services, making it more patient-centric, and enabling better cost control. Healthcare organizations strive to identify and carry out such improvement initiatives to sustain their businesses and gain competitive advantage. Seeking to reach a higher operational level of excellence, healthcare organizations utilize business excellence criteria to conduct assessment and identify organizational strengths and weaknesses. However, while such assessments routinely identify numerous areas for potential improvement, it is not feasible to conduct all improvement projects simultaneously due to limitations in time, capital, and personnel, as well as conflict with other organization's projects or strategic objectives. An effective prioritization and selection approach is valuable in that it can assist the organization to optimize its available resources and outcomes. This study attempts to enable such an approach by developing a framework to prioritize improvement opportunities in healthcare in the context of the business excellence model through the integration of the Fuzzy Delphi Method and Fuzzy Interface System. To carry out the evaluation process, the framework consists of two phases. The first phase utilizes Fuzzy Delphi Method to identify the most significant factors that should be considered in healthcare for electing the improvement projects. The FDM is employed to handle the subjectivity of human assessment. The research identifies potential factors for evaluating projects, then utilizes FDM to capture expertise knowledge. The first round in FDM is intended to validate the identified list of factors from experts; which includes collecting additional factors from experts that the literature might have overlooked. When an acceptable level of consensus has been reached, a second round is conducted to obtain experts' and other related stakeholders' opinions on the appropriate weight of each factor's importance. Finally, FDM analyses eliminate or retain the criteria to produce a final list of critical factors to select improvement projects. The second phase in the framework attempts to prioritize improvement initiatives using the Hierarchical Fuzzy Interface System. The Fuzzy Interface System combines the experts' ratings for each improvement opportunity with respect to the factors deemed critical to compute the priority index. In the process of calculating the priority index, the framework allows the estimation of other intermediate indices including: social, financial impact, strategical, operational feasibility, and managerial indices. These indices bring an insight into the improvement opportunities with respect to each framework's dimensions. The framework allows for a reduction of the bias in the assessment by developing a knowledge based on the perspectives of multiple experts.


If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date





Elshennawy, Ahmad


Doctor of Philosophy (Ph.D.)


College of Engineering and Computer Science


Industrial Engineering and Management Systems

Degree Program

Industrial Engineering









Release Date

December 2018

Length of Campus-only Access


Access Status

Doctoral Dissertation (Open Access)