Abstract

The need for nanoscale, non-invasive functional characterization has become more significant with advances in nano-biotechnology and related fields. Exploring the ultrastructure of plant cell walls and plant-derived materials is necessary to access a more profound understanding of the molecular interactions in the systems, in view of a rational design for sustainable applications. This, in turn, relates to the pressing requirements for food, energy and water sustainability experienced worldwide. Here we will present our advanced characterization approach to study the effects of external stresses on plants, and resulting opportunities for biomass valorization with an impact on the food-energy-water nexus. First, the adaption of plants to the pressure imposed by gravity in poplar reaction wood will be discussed. We will show that a multiscale characterization approach is necessary to reach a better understanding of the chemical and physical properties of cell walls across a transverse section of poplar stem. Our Raman spectroscopy and statistical analysis reveals intricate variations in the cellulose and lignin properties. Further, we will present evidence that advanced atomic force microscopy can reveal nanoscale variations within the individual cell wall layers, not attainable with common analytical tools. Next, chemical stresses, in particular the effect of Zinc-based pesticides on citrus plants, will be considered. We will show how multiscale characterization can support the development of new disease management methods for systemic bacterial diseases, such as citrus greening, of great importance for sustainable agriculture. In particular, we will focus on the study of new formulations, their uptake and translocation in the plants following different application methods. Lastly, we will consider how plant reactions to mechanical and chemical stresses can be controlled to engineer biomass for valorization applications. We will present our characterization of two examples: the production of carbon films derived from woody lignocellulosic biomass and the development of nanoscale growth promoters for food crop. A perspective of the work and discussion of the broader impact will conclude the presentation.

Graduation Date

2018

Semester

Spring

Advisor

Tetard, Laurene

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Materials Science Engineering

Degree Program

Materials Science and Engineering

Format

application/pdf

Identifier

CFE0007415

URL

http://purl.fcla.edu/fcla/etd/CFE0007415

Language

English

Release Date

November 2018

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS