Abstract

In order to extend the capabilities and applications of silicon photonics, other materials and compatible technologies have been developed and integrated on silicon substrates. A particular class of integrable materials are those with high second- and third-order nonlinear optical properties. This work presents contributions made to nonlinear integrated photonics on silicon substrates, including chalcogenide waveguides for over an octave supercontinuum generation, and rib-loaded thin-film lithium niobate waveguides for highly efficient second-harmonic generation. Through the pursuit of hybrid integration of the two types of waveguides for applications such as on-chip self-referenced optical frequency combs, we have experimentally demonstrated fabrication integrability of chalcogenide and thin-film lithium niobate waveguides in a single chip and a pathway for both second- and third-order nonlinearities occurring therein. Accordingly, design specifications for an efficient nonlinear integrated waveguide are reported, showing over an octave supercontinuum generation and frequency selectivity for second-harmonic generation, enabling potentials of on-chip interferometry techniques for carrier-envelope offset detection, and hence stabilized optical combs.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu.

Graduation Date

2019

Semester

Summer

Advisor

Fathpour, Sasan

Degree

Doctor of Philosophy (Ph.D.)

College

College of Optics and Photonics

Department

Optics and Photonics

Degree Program

Optics and Photonics

Format

application/pdf

Identifier

CFE0007607

URL

http://purl.fcla.edu/fcla/etd/CFE0007607

Language

English

Release Date

August 2022

Length of Campus-only Access

3 years

Access Status

Doctoral Dissertation (Campus-only Access)

Share

COinS