Abstract

The advancement of semiconductor device technology over the past decades has enabled the design of increasingly complex electrical and computational machines. Electronic design automation (EDA) has played a significant role in the design and implementation of transistor-based machines. However, as transistors move closer toward their physical limits, the speed-up provided by Moore's law will grind to a halt. Once again, we find ourselves on the verge of a paradigm shift in the computational sciences as newer devices pave the way for novel approaches to computing. One of such devices is the memristor -- a resistor with non-volatile memory. Memristors can be used as junctional switches in crossbar circuits, which comprise of intersecting sets of vertical and horizontal nanowires. The major contribution of this dissertation lies in automating the design of such crossbar circuits -- doing a new kind of EDA for a new kind of computational machinery. In general, this dissertation attempts to answer the following questions: a. How can we synthesize crossbars for computing large Boolean formulas, up to 128-bit? b. How can we synthesize more compact crossbars for small Boolean formulas, up to 8-bit? c. For a given loop-free C program doing integer arithmetic, is it possible to synthesize an equivalent crossbar circuit? We have presented novel solutions to each of the above problems. Our new, proposed solutions resolve a number of significant bottlenecks in existing research, via the usage of innovative logic representation and artificial intelligence techniques. For large Boolean formulas (up to 128-bit), we have utilized Reduced Ordered Binary Decision Diagrams (ROBDDs) to automatically synthesize linearly growing crossbar circuits that compute them. This cutting edge approach towards flow-based computing has yielded state-of-the-art results. It is worth noting that this approach is scalable to n-bit Boolean formulas. We have made significant original contributions by leveraging artificial intelligence for automatic synthesis of compact crossbar circuits. This inventive method has been expanded to encompass crossbar networks with 1D1M (1-diode-1-memristor) switches, as well. The resultant circuits satisfy the tight constraints of the Feynman Grand Prize challenge and are able to perform 8-bit binary addition. A leading edge development for end-to-end computation with flow-based crossbars has been implemented, which involves methodical translation of loop-free C programs into crossbar circuits via automated synthesis. The original contributions described in this dissertation reflect the substantial progress we have made in the area of electronic design automation for synthesis of memristor crossbar networks.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu.

Graduation Date

2019

Semester

Summer

Advisor

Jha, Sumit Kumar

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Computer Science

Degree Program

Computer Science

Format

application/pdf

Identifier

CFE0007609

URL

http://purl.fcla.edu/fcla/etd/CFE0007609

Language

English

Release Date

August 2019

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS