Abstract

The importance of sensing technologies in the field of transportation is ever increasing. Rapid improvements of cloud computing, Internet of Vehicles (IoV), and intelligent transport system (ITS) enables fast acquisition of sensor data with immediate processing. Machine learning algorithms provide a way to classify or predict outcomes in a selective and timely fashion. High accuracy and increased volatility are the main features of various learning algorithms. In this dissertation, we aim to use infrastructure- and vehicle-based sensors to improve safety and mobility of urban transportation systems. Smartphone sensors were used in the first study to estimate vehicle trajectory using lane change classification. It addresses the research gap in trajectory estimation since all previous studies focused on estimating trajectories at roadway segments only. Being a mobile application-based system, it can readily be used as on-board unit emulators in vehicles that have little or no connectivity. Secondly, smartphone sensors were also used to identify several transportation modes. While this has been studied extensively in the last decade, our method integrates a data augmentation method to overcome the class imbalance problem. Results show that using a balanced dataset improves the classification accuracy of transportation modes. Thirdly, infrastructure-based sensors like the loop detectors and video detectors were used to predict traffic signal states. This system can aid in resolving the complex signal retiming steps that is conventionally used to improve the performance of an intersection. The methodology was transferred to a different intersection where excellent results were achieved. Fourthly, magnetic vehicle detection system (MVDS) was used to generate traffic patterns in crash and non-crash events. Variational Autoencoder was used for the first time in this study as a data generation tool. The results related to sensitivity and specificity were improved by up to 8% as compared to other state-of-the-art data augmentation methods.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2021

Semester

Summer

Advisor

Abdel-Aty, Mohamed

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Civil, Environmental, and Construction Engineering

Degree Program

Civil Engineering

Format

application/pdf

Identifier

CFE0009111; DP0026444

URL

https://purls.library.ucf.edu/go/DP0026444

Language

English

Release Date

February 2022

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS