Abstract
This currently presented work is an evaluation of the characteristics of different cooling hole geometries to particulate ingestion clogging. Experimentation was conducted using a premixed bluff body flame combustor facility to generate high temperature combustor flow conditions. Sand ingestion along the cooling path of the combustion liner was reproduced using an air-assisted seeder providing consistent sand ingestion. Mass flow rate of cooling air was controlled using a sonic orifice downstream of a pressure regulator so that the mass flow rate of the air and sand mixture is independent of the clogging state. Pressure data upstream of a small section of a combustion liner was recorded to quantify the clogging of the different combustion liner cooling geometries over time. Several geometries were tested including 3 "S" shaped slots with varying width and length, along with tapered straight slots, and compared to the traditional straight round hole. It was found that a diverging orientation of the tapered slot had the most promising performance mitigating particulate deposition. The displacement boundary layer growth interaction with the main flow within the diverging section of the slot is discussed as the main contributing factor to resist clogging. The use of such a clogging-resistant combustion liner could drastically reduce the maintenance necessary for vehicles operating in sandy and dusty environments, reducing the overall operational cost, and lowering risks of complete failure of the aircraft propulsion system.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2022
Semester
Summer
Advisor
Ahmed, Kareem
Degree
Master of Science in Aerospace Engineering (M.S.A.E.)
College
College of Engineering and Computer Science
Department
Mechanical and Aerospace Engineering
Degree Program
Aerospace Engineering; Thermofluid Aerodynamic Systems
Identifier
CFE0009236; DP0026840
URL
https://purls.library.ucf.edu/go/DP0026840
Language
English
Release Date
August 2022
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Padilla, Nelson, "Sensitivity of Combustion Liner Contour to Sand Ingestion Clogging" (2022). Electronic Theses and Dissertations, 2020-2023. 1265.
https://stars.library.ucf.edu/etd2020/1265