Abstract
Liquid fuels are desirable in aerospace applications due to their higher energy density when compared to gaseous fuels. With the advent of detonation-based engines, it is necessary to characterize and analyze how liquid fuel interacts with detonation waves as well as shocks to ignite. While liquid fuel sprays have been proven to successfully aid and sustain detonations, the physical mechanism by which the individual liquid droplets accomplish this is yet to be understood. Such knowledge allows for more predictable detonation properties, which in turn can let detonation-based engines be sustained more easily. This research seeks to quantify and characterize interactions of liquid fuels with detonations and shocks, analyzing the breakup mechanism as well as the ignition of select fuels. Such effects will be characterized for several different mixture compositions as well as shock and detonation speeds. Primary analysis techniques include shadowgraph, Schlieren, and chemiluminescence imaging. Data on pressure will also be taken with pressure transducers to confirm shock and detonation properties. This research will further the progress of liquid fuel detonation-based engines by enabling more predictable and sustainable detonations.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2022
Semester
Summer
Advisor
Ahmed, Kareem
Degree
Master of Science in Aerospace Engineering (M.S.A.E.)
College
College of Engineering and Computer Science
Department
Mechanical and Aerospace Engineering
Degree Program
Aerospace Engineering; Thermofluid Aerodynamic Systems
Identifier
CFE0009238; DP0026842
URL
https://purls.library.ucf.edu/go/DP0026842
Language
English
Release Date
August 2022
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Patten, John, "Exploration of Shock-Droplet Ignition and Combustion" (2022). Electronic Theses and Dissertations, 2020-2023. 1267.
https://stars.library.ucf.edu/etd2020/1267