Abstract

Heavy-duty trucks (HDTs) play a central role in U.S. freight transportation, carrying most of the goods across the country. The projected increase in freight activity (e.g. truck-miles-traveled) raises concerns regarding the potential sustainability impacts of the U.S. freight industry, marking HDTs as an ideal domain for improving the sustainability performance of U.S. freight transportation. However, the transition to sustainable trucking is a challenging task, for which multiple sustainability objectives must be considered and addressed under a variety of emerging HDT technologies while composing a sustainable HDT fleet. To gain insights into the sustainability implications of emerging HDT technologies as well as how they can be adopted by freight organizations, given their implications, this research employed an integrated approach composed of methods and techniques, grounded in sustainability science, operations research, and statistical learning theory, to provide a scientific means with public and private organizations to increase the effectiveness of policies and strategies. The research has contributed to the scientific body of knowledge in three useful ways; (1) by comprehensively analyzing HDT electrification based on regional differences in power generation practices and price forecasts, (2) by conducting the first life cycle sustainability assessment (LCSA) on HDT automation and electrification, and (3) providing a case study of an unsupervised machine learning application for sustainability science. Consequently, the research has found that, given the transformation of the U.S. energy system towards renewables, automation and electrification of HDTs offer significant potential for improving the sustainability performance of these vehicles, especially in terms of global warming potential, life cycle costs, gross domestic product, import independence, and income generation. The research has also found that, under the prevailing techno-economic circumstances and except for energy security reasons, natural gas as a transportation fuel option for freight trucks is by almost no means a viable alternative to diesel.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2020

Semester

Spring

Advisor

Tatari, Omer

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Civil, Environmental, and Construction Engineering

Degree Program

Civil Engineering

Format

application/pdf

Identifier

CFE0008038; DP0023178

URL

https://purls.library.ucf.edu/go/DP0023178

Language

English

Release Date

May 2020

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS