Abstract
An increase in the demand for electrical power and tremendous growth of renewable energy sources has been seen in the last decade, which resulted in designing the wind turbine system components for higher load point performance, resulting in higher annual energy production. Cost optimization, weight reduction, and lower non-conformance cost are some of the expectations that the wind turbine needs to meet in the present stringent market condition. Overheating of the wind turbine system components is one of the primary challenges to overcome when the system operates at a higher load point. The overheating issue of the wind turbine generator system is the subject of this research. Windings and bearings are two primary components susceptible to failure in the wind turbine generator. Overheating accelerates the generator windings and bearings failure. A detailed investigation has been done on the air to the air-cooled generator in a test wind turbine in Europe. A unique cooling design has been proposed. The temperature rise in the test generator with a new cooling design found to be substantially lower, and the signification temperature dropped has been measured in winding and bearing temperature, which allows the machine to operate at the higher load point. All the risks and mitigation associated with the proposed design are thoroughly evaluated. The research presents the issue of generator winding strand tilt with a system approach and explains how the system performance can be evaluated with respect to a component level performance. The issue of measuring strand tilt is presented in a case study. Selecting a correct insulation system for the generator winding for the wind turbine application has been recommended to IEC/IEEE. The research presents a unique finding in the difference in drive and non-drive end bearing temperature. A proposal has been made to update IEC/IEEE standard to mitigate this potential problem. Higher availability of wind turbines lead to higher annual energy production from the turbine, this research contributes to increasing the availability of the wind turbine by addressing and proposing the overheating solution of the wind turbine generator.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2020
Semester
Spring
Advisor
Sundaram, Kalpathy
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Electrical and Computer Engineering
Degree Program
Electrical Engineering
Format
application/pdf
Identifier
CFE0008039; DP0023179
URL
https://purls.library.ucf.edu/go/DP0023179
Language
English
Release Date
May 2023
Length of Campus-only Access
3 years
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Singh, Gopal, "Wind Turbine Generator Overheating Solution" (2020). Electronic Theses and Dissertations, 2020-2023. 133.
https://stars.library.ucf.edu/etd2020/133