Abstract

Automation in agriculture, driven by labor shortages and steep production costs, is integral to the future cultivation of specialty crops such as strawberries. To efficiently harvest a strawberry field, a tri-layered algorithm is developed to address the assignment problem that arises when cooperative robots seek a new row to harvest. The proposed algorithm incentivizes robots to cooperate to maximize yield in minimal time, analogous to human harvesters, making it relatively simple to understand and implement. A primary local auction phase is implemented with a centralized fallback algorithm. The local auction is of constant time complexity and aims to reduce communication time among robots, allowing the algorithm to scale to the large farm and fleet sizes required for commercial production. The decentralized process enables real-time decision making and improves robustness. A Monte-Carlo simulation of the proposed algorithm is developed, and the results are compared to a centralized benchmark process with the algorithm displaying superior scalability

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2021

Semester

Fall

Advisor

Xu, Yunjun

Degree

Master of Science in Aerospace Engineering (M.S.A.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Aerospace Engineering; Thermofluid Aerodynamic Systems

Identifier

CFE0009306; DP0026910

URL

https://purls.library.ucf.edu/go/DP0026910

Language

English

Release Date

June 2025

Length of Campus-only Access

3 years

Access Status

Masters Thesis (Campus-only Access)

Restricted to the UCF community until June 2025; it will then be open access.

Share

COinS