Abstract

Cancer is a particularly difficult disease to manage and treat, with cancer of the lung being a notably complex disease to treat with radiation therapy. In this study, a stereolithography-based 3D printing process was developed to fabricate human lung phantoms with identical mechanical and physical properties of human lungs in order to assist with targeted radiation therapy. A highly flexible UV photopolymer material with an elastic modulus of approximately 350 KPa was formulated for use in a custom-built stereolithography-based 3D printing apparatus. The printer built for 3D printing of the photopolymer features a large build volume with off-shelf components with fully open-source and efficient design. A lung phantom model of approximately 1/3rd scale was printed and further tested to simulate the tidal breathing motion in a respirator apparatus.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2020

Semester

Spring

Advisor

Gou, Jihua

Degree

Master of Science in Mechanical Engineering (M.S.M.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering; Mechanical Systems Track

Format

application/pdf

Identifier

CFE0008041; DP0023181

URL

https://purls.library.ucf.edu/go/DP0023181

Language

English

Release Date

May 2020

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS