Abstract

Quantum computers can efficiently simulate natural processes and solve certain types of mathematical problems. Two of the key issues preventing the development of platforms to realize a scalable quantum machine are the decoherence of the qubits due to the interaction with the environment and the existence of a large overhead to correct errors. Although there already exist noisy intermediate-scale quantum machines, we still need to improve much to be able to solve problems faster than the already existing classical computers. In this dissertation, we explore two approaches to tackle both issues. We propose a scheme where, using quasi-Majorana zero modes located at the edges of nanowires, we construct a logical Majorana zero mode on a network of nanowires. We show that just by modulating the voltage on the nanowires, it is possible to manipulate the position of the logical Majorana zero mode. This could be a significant step towards performing a braiding operation in two dimensions, which is a necessary part of making a fault-tolerant topological quantum computer. In addition to this, we study how disorder in an interacting quantum many-body system can help protect coherence on a given basis. We also employ an experimentally-accessible measurement-based protocol to study local coherence in such systems.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2022

Semester

Fall

Advisor

Mucciolo, Eduardo

Degree

Doctor of Philosophy (Ph.D.)

College

College of Sciences

Department

Physics

Degree Program

Physics

Format

application/pdf

Identifier

CFE0009342; DP0027065

URL

https://purls.library.ucf.edu/go/DP0027065

Language

English

Release Date

December 2022

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS