Abstract

Detonations are a supersonic mode of combustion witnessed in a variety of applications, from next-generation propulsion devices to catastrophic explosions and the formation of supernovas. Detonations are typically initiated through the deflagration to detonation transition (DDT), a detailed process where a subsonic flame undergoes rapid acceleration increasing compressibility until a hotspot forms on the flame front inciting a detonation wave to form. Due to the complex nature of the phenomena, DDT is commonly investigated in three stages – (i) preconditioning, (ii) detonation onset, and (iii) wave propagation and stability. The research presented explores each of these stages individually, with a focus on preconditioning, to further resolve the governing mechanisms needed to initiate and sustain a detonation. More specifically, this work seeks to investigate the flow field and flame characteristics in reactions with increasing compressibility. Additionally, the research examines detonation onset and wave propagation to attain an all-encompassing concept of the DDT process. The work uses simultaneous high-speed diagnostics, consisting of particle image velocimetry (PIV), OH* chemiluminescence, schlieren and pressure measurements, to experimentally examine the preconditioning stage. Through the comprehensive suite of diagnostics, this research deduces the role of turbulence in detonation onset to an ongoing cycle of flame generated compression that amplifies until the hotspot ignites.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2022

Semester

Fall

Advisor

Ahmed, Kareem

Degree

Master of Science in Aerospace Engineering (M.S.A.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Aerospace Engineering; Thermofluid Aerodynamic Systems

Format

application/pdf

Identifier

CFE0009364; DP0027087

URL

https://purls.library.ucf.edu/go/DP0027087

Language

English

Release Date

December 2022

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS