Abstract
Fluorescence microscopy has long been a valuable tool for biological and medical imaging. Control of optical parameters such as the amplitude, phase, polarization and propagation angle of light gives fluorescence imaging great capabilities ranging from single molecule imaging to long-term observation of living organisms. While numerous fluorescence imaging techniques have been developed over the past decades, there is always an inevitable tradeoff among the spatial resolution, imaging speed, contrast, photodamage and the total cost when it comes to choose the appropriate microscope. A main goal of my dissertation research is to develop state-of-the-art microscope systems that exhibit unprecedented performance in single-molecule fluorescence imaging and live-cell imaging for broader biomedical applications by tailoring the optical illumination beams. In details, I have designed and prototyped: 1) a highly inclined swept illumination for wide-field fluorescence microscope, which greatly improves the sectioning capability with a large field of view and ultrasensitivity; 2) dual inclined line-scan confocal microscope, which reduces photodamage while maintaining the background rejection capability compared to conventional line-scan confocal microscope; 3) a static non-diffracting light-sheet generation by controlling the spatial coherence of light emitting diodes and laser.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2020
Semester
Spring
Advisor
Han, Kyu Young
Degree
Doctor of Philosophy (Ph.D.)
College
College of Optics and Photonics
Department
Optics and Photonics
Degree Program
Optics and Photonics
Format
application/pdf
Identifier
CFE0008046; DP0023186
URL
https://purls.library.ucf.edu/go/DP0023186
Language
English
Release Date
May 2023
Length of Campus-only Access
3 years
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Tang, Jialei, "Fluorescence Microscopy with Tailored Illumination Light" (2020). Electronic Theses and Dissertations, 2020-2023. 140.
https://stars.library.ucf.edu/etd2020/140