Abstract

Deployable structures have made an immense impact in the engineering world. The concept of the deployable structure has been able to reduce costs and sizing limits across a variety of use cases. However, sizing and cost reduction are not the only reasons that deployable structures are prominent. There are unique propeller blades that have entered into the world of deployable structures, where the ability to be stowed away and deployed to a much larger diameter can increase launch flexibility, and the engine efficiencies of aircraft. Although, most of the deployable propeller blades that have been designed in studies have the usual hinge mechanism where the down side of a hinge is that it does not necessarily provide any stiffness nor does it change the diameter of the propeller blade when stowed away. However, an unique strategy, that uses the underlying principle of snap through buckling can help to negate the use of hinges. This principle allows the propeller blade itself to be folded and stowed away, where stored strain energy is used in order to self-deploy back into the original shape. This paper will present an overall approach to the structural architecture development, conceptual prototype fabrication, and computational analysis of a foldable propeller blade.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2022

Semester

Fall

Advisor

Kwok, Kawai

Degree

Master of Science in Aerospace Engineering (M.S.A.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Aerospace Engineering; Space Systems Design and Engineering

Format

application/pdf

Identifier

CFE0009379; DP0027102

URL

https://purls.library.ucf.edu/go/DP0027102

Language

English

Release Date

December 2022

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS