Abstract
Compressive Sensing (CS) is a signal processing technique which reduces the number of samples taken per frame to decrease energy, storage, and data transmission overheads, as well as reducing time taken for data acquisition in time-critical applications. The tradeoff in such an approach is increased complexity of signal reconstruction. While several algorithms have been developed for CS signal reconstruction, hardware implementation of these algorithms is still an area of active research. Prior work has sought to utilize parallelism available in reconstruction algorithms to minimize hardware overheads; however, such approaches are limited by the underlying limitations in CMOS technology. Herein, the MFPA (Mixed-signal Field Programmable Array) approach is presented as a hybrid spin-CMOS reconfigurable fabric specifically designed for implementation of CS data sampling and signal reconstruction. The resulting fabric consists of 1) slice-organized analog blocks providing amplifiers, transistors, capacitors, and Magnetic Tunnel Junctions (MTJs) which are configurable to achieving square/square root operations required for calculating vector norms, 2) digital functional blocks which feature 6-input clockless lookup tables for computation of matrix inverse, and 3) an MRAM-based nonvolatile crossbar array for carrying out low-energy matrix-vector multiplication operations. The various functional blocks are connected via a global interconnect and spin-based analog-to-digital converters. Simulation results demonstrate significant energy and area benefits compared to equivalent CMOS digital implementations for each of the functional blocks used: this includes an 80% reduction in energy and 97% reduction in transistor count for the nonvolatile crossbar array, 80% standby power reduction and 25% reduced area footprint for the clockless lookup tables, and roughly 97% reduction in transistor count for a multiplier built using components from the analog blocks. Moreover, the proposed fabric yields 77% energy reduction compared to CMOS when used to implement CS reconstruction, in addition to latency improvements.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2020
Semester
Spring
Advisor
DeMara, Ronald
Degree
Master of Science in Computer Engineering (M.S.Cp.E.)
College
College of Engineering and Computer Science
Department
Electrical and Computer Engineering
Degree Program
Computer Engineering
Format
application/pdf
Identifier
CFE0008047; DP0023187
URL
https://purls.library.ucf.edu/go/DP0023187
Language
English
Release Date
May 2020
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Tatulian, Adrian, "MFPA: Mixed-Signal Field Programmable Array for Energy-Aware Compressive Signal Processing" (2020). Electronic Theses and Dissertations, 2020-2023. 141.
https://stars.library.ucf.edu/etd2020/141