Abstract

Living organisms exhibit daily rhythms as a way to anticipate predictable fluctuations in their environment. Such daily rhythmicity is the phenotypic outcome of oscillating genes and proteins, driven by an endogenous biological clock. Clock-controlled behavioral rhythms are inherently "flexible" since their phase, amplitude, and period can change throughout an animal's life hallmarked by changes in so-called chronotype. How this inherent plasticity of clock-controlled rhythms is linked to plasticity of behavior is still an open question in biology. Characterizing the various mechanistic links between plasticity of the animal clock and behavioral state will not only shed light on the molecular underpinnings of animal behavior, but also lead to novel chronotherapeutic interventions to treat human disorders that affect the behavioral state such as bipolar disorder and Alzheimer's. While clock-controlled behavioral plasticity is crucial to a species' survival and fitness, it has also been hypothesized to be a target for manipulative parasites that need to induce timely changes in host behavior to facilitate growth and transmission. Using the Florida carpenter ant Camponotus floridanus as a model, this dissertation attempts to bridge some of the existing knowledge gaps in sociobiology, chronobiology, and parasitology. In the first chapter, we have identified a mechanistic link between plasticity of the C. floridanus clock and its behavioral state. Subsequently, in chapter two, we have provided evidence showing that Ophiocordyceps camponoti-floridani, a fungal parasite that induces timely changes in C. floridanus behavior targets the pre-existing links between host behavior and chronobiological plasticity we have found in chapter one. In the final chapter, we characterize how the clock of O. camponoti-floridani functionally differs from the clock of a non-manipulating fungal parasite, Beauveria bassiana, and put forward a regulatory mechanism via which the manipulating parasite's clock might be inducing timely changes in host behavior.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2022

Semester

Spring

Advisor

De Bekker, Charissa

Degree

Doctor of Philosophy (Ph.D.)

College

College of Sciences

Department

Biology

Degree Program

Integrative Conservation Biology; Integrative Biology Track

Format

application/pdf

Identifier

CFE0009439; DP0027162

URL

https://purls.library.ucf.edu/go/DP0027162

Language

English

Release Date

November 2022

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS