Abstract

Solar energy is one of the fastest growing forms of energy generation due to its low cost, lack of emissions, minimal maintenance, and excellent durability. However, like any other technology, it is also not free from defects and degradation, which limit its performance in the real world. Most of the degradation is related to metal contacts, which also happens to be one of the most expensive items in manufacturing, comprising almost half of the cost of converting a silicon wafer into a photovoltaic (PV) cell. Therefore, studying contact degradation to make them reliable and free of defects is the key to achieving high energy yields. High efficiency PV modules that are both cheap and reliable with an extended lifetime ultimately reduce the levelized cost of energy. This study aims to characterize contact degradation in solar cells to identify the root causes of performance losses and develop alternate solutions to metallization. Electrical and optical characterizations were performed on both accelerated-aged and field-exposed solar cells and modules to look for specific performance losses. Furthermore, materials characterization was performed on selected samples to understand the potential root causes and factors affecting the degradation. Unencapsulated solar cells mainly consisting of newer cell technologies and metallization were exposed to acetic acid to simulate field conditions and understand the effect on contact corrosion. Finally, a low-cost novel contact technology called the "transferred foil contact" was developed that can be used as the back contact of a highly efficient silicon heterojunction solar cell, to minimize recombination, and potentially combine cell metallization and interconnection. An overview of the solar energy history and current state-of-the-art is first discussed, followed by a chapter on solar cell device physics and contact technology. The following chapters discuss the different degradation mechanisms in terms of the process-structure-properties relationships of the PV materials.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2022

Semester

Spring

Advisor

Davis, Kristopher

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Materials Science and Engineering

Degree Program

Materials Science and Engineering

Format

application/pdf

Identifier

CFE0009445; DP0027168

URL

https://purls.library.ucf.edu/go/DP0027168

Language

English

Release Date

November 2022

Length of Campus-only Access

None

Access Status

Doctoral Dissertation (Open Access)

Share

COinS