Abstract
Power inductors, or reactors as they are called in the power industry, are one of the fundamental components of a power system. They serve various purposes in both conventional and emerging power systems including: power flow control, fault current limitation, reactive power compensation, harmonic filtering, and others. This dissertation explores the design and applications of conventional power inductors and ways to overcome their shortcomings and expand their functionalities. In addition, novel inductor designs are proposed and analyzed to address power system challenges. A series of inductors, including traditional constant reactance inductor, gapless ferromagnetic core reactor (GFCR) (both costant and variable reactance), and magnetic amplifier-based variable reactance reactor (both single-phase and three-phase), are considered and examined. The various unique inductor designs have been analyzed, both analytically and numerically, and their potential assessed for applications in modern power systems using novel simulation frameworks. A finite element analysis (FEA) based numerical modeling has been carried out for all inductors for accurate representation and analysis. On the other hand, analytical modeling based on magnetic equivalent circuit (MEC) has been presented, to complement the FEA-based approach and overcome its shortcomings. A comparative analysis of the processes provides insights into the effectiveness and accuracy of the proposed analytical models. Also, an advanced data-intensive machine learning (ML) approach to understanding the working of magnetic amplifier technology has been proposed. Additionally, a unique optimal power flow (OPF) formulation with variable reactance because of the power magnetic devices like a magnetic amplifier in a power system is presented. This dissertation covers the presentation of novel inductor designs and their advantages, analyses, and assessments to the broad scientific community and the industry. This kind of research is expected to pave the pathway for future innovations in inductor technologies for applications in modern power systems to make them more reliable, resilient, and efficient.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2022
Semester
Spring
Advisor
Dimitrovski, Aleksandar
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Electrical and Computer Engineering
Degree Program
Electrical Engineering
Format
application/pdf
Identifier
CFE0009453; DP0027176
URL
https://purls.library.ucf.edu/go/DP0027176
Language
English
Release Date
November 2022
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Pokharel, Subash, "Power Inductors: Design, Modeling and Analysis" (2022). Electronic Theses and Dissertations, 2020-2023. 1482.
https://stars.library.ucf.edu/etd2020/1482