Abstract

Detonation-based propulsion systems are desired due to their potential for thermodynamic cycle efficiencies much higher than traditional, constant pressure deflagration-based systems. Additionally, the ability to propagate in high-Mach number flow regimes makes detonations promising for supersonic combustion applications. Oblique detonation waves (ODW) are a subset of detonations that have been proposed for use in a number of detonation-based propulsion concepts. However, most studies into initiation and stabilization of ODWs have been numerical studies without sufficient experimental validation. Experimental setups, such as expansion tubes, typically have extremely limited run times (< 100 ms) due to practical difficulties in attaining the necessary conditions in a continuous flow ( > 1 second) system. Those difficulties include the need for high pressures, temperatures, and the correct chemical composition in order to create a supersonic flow that is favorable for detonations. The work described within this dissertation focuses on the facility design and investigations into supersonic combustion and detonation stabilization using continuous flow facilities, including the HyperReact Facility. Using HyperReact, tests were conducted with varied pressures, temperatures, geometries, and flow compositions. From those tests, the operability map of the system was created, from which 3 major reaction regimes were defined. Those regimes include: intermittent, low-intensity reactions (regime I), intermittent, higher-intensity reactions (regime II), and quasi-stable reactions (regime III). Multiple diagnostics were performed, including high-speed shadowgraph and chemiluminescence imaging, Raman spectroscopy, as well as pressure and temperature measurements at multiple locations.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2022

Semester

Spring

Advisor

Ahmed, Kareem

Degree

Doctor of Philosophy (Ph.D.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Mechanical Engineering

Format

application/pdf

Identifier

CFE0009457; DP0027180

URL

https://purls.library.ucf.edu/go/DP0027180

Language

English

Release Date

November 2027

Length of Campus-only Access

5 years

Access Status

Doctoral Dissertation (Campus-only Access)

Restricted to the UCF community until November 2027; it will then be open access.

Share

COinS