Abstract
The United States Environmental Protection Agency regulates the lead and copper content of a public water system's finished water at the consumer's tap, through the Safe Drinking Water Act's Lead and Copper Rule (LCR), promulgated in 1991. This rule was recently changed through the LCR Revisions (LCRR), that took effect in 2021. The more stringent requirements of the LCRR motivated the City of Sarasota, Florida (City), to work with the University of Central Florida (UCF) on a study of the municipality's finished water corrosivity. Initially, this evaluation investigated the City's existing finished water corrosivity using linear polarization resistance (LPR) measurements and gravimetric coupon analysis at the pilot-scale, during which four phosphate-based inhibitors were tested for corrosion control. Based on the initial screening results, the City challenged UCF to derive a cost-effective, bench-scale method that could mimic distribution system conditions and be used to assess treatment technology infrastructure changes on finished water corrosivity. A modified corrosion jar test was developed that compared metal release of a high and low total dissolved solids water. The modified bench-scale method that omitted the effects of zero headspace using a sealed environment was found to be an improvement over conventional jar testing techniques. The results of the bench-scale experiments demonstrated the effectiveness and reproducibility of the modified method, as confirmed through analyses of variance. The modified bench-scale method simulated distribution system metal release, using first-order kinetic models, with R2 values of up to 0.98, demonstrating its beneficial use as a cost-effective alternative to otherwise more complicated pipe loop studies.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2023
Semester
Spring
Advisor
Duranceau, Steven
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Civil, Environmental, and Construction Engineering
Degree Program
Environmental Engineering
Format
application/pdf
Identifier
CFE0009493; DP0027494
URL
https://purls.library.ucf.edu/go/DP0027494
Language
English
Release Date
May 2024
Length of Campus-only Access
1 year
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Campesino, Paula, "Bench- and Pilot-Scale Corrosion Control Inhibitor Effectiveness Studies for a Community's Blended Surficial and Brackish Groundwater Supply" (2023). Electronic Theses and Dissertations, 2020-2023. 1528.
https://stars.library.ucf.edu/etd2020/1528