Abstract
Fluids-related issues in the Aerospace industry are often multiphase in scope. Numerical modeling, such as computational fluid dynamics, is used to describe these problems, as they are difficult or impossible to describe analytically. This research uses computational fluid dynamics to describe multiphase problems related to melting-solidification and particle impingement. Firstly, a numerical model was established that uses the Volume-of-Fluid method to resolve a melting/solidifying particle. This model was verified against experiments and simplified analytical models, and a mesh independence study was done to ensure the results were independent of the mesh sizing. Next, the model was applied to two separate but related problems. The Artemis program has renewed interest in lunar dust mitigation. It is proposed that lunar regolith partially melts and becomes "sticky" when coming into contact with a jet flame, like a landing rocket. The method above was applied to a lunar regolith particle to show how these "sticky" particles can adhere to surfaces. The direct resolution methodology was also applied to a melted sand particle impinging and infiltrating a yttria-stabilized zirconia thermal barrier coating, as seen in engine turbines. Sand can infiltrate the thermal barrier coating and decrease its effectiveness. The infiltration from a single particle was compared to the infiltration from a stream of melted sand. These three efforts showcase the usefulness of directly resolving small particles using the Volume-of-Fluid method.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2023
Semester
Spring
Advisor
Kinzel, Michael
Degree
Master of Science in Aerospace Engineering (M.S.A.E.)
College
College of Engineering and Computer Science
Department
Mechanical and Aerospace Engineering
Degree Program
Aerospace Engineering; Thermofluid Aerodynamic Systems Design and Engineering
Identifier
CFE0009497; DP0027499
URL
https://purls.library.ucf.edu/go/DP0027499
Language
English
Release Date
May 2023
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Cavainolo, Brendon, "The Development of Computational Models for Melting-Solidification Applications Using the Volume-Of-Fluid Method" (2023). Electronic Theses and Dissertations, 2020-2023. 1533.
https://stars.library.ucf.edu/etd2020/1533