Abstract

Pedestrians are regarded as Vulnerable Road Users (VRUs). Each year, thousands of pedestrians' deaths are caused by traffic crashes, which take up 16% of the total road fatalities and injuries in the U.S. (FHWA, 2018). Crashes can happen if there are interactions between VRUs and motorized transportation. And pedestrians' unexpected crossings, such as red-light violations at the signalized intersections, would expose them to motorized transportation and cause potential collisions. This thesis is intended to predict the pedestrians' red-light violation behaviors at the signalized crosswalks based on an LSTM (Long Short-term Memory) neural network. With video data collected from real traffic scenes, it is found that pedestrians that crossed during the red-light periods are more in danger of being struck by vehicles, from the perspective of Surrogate Safety Measures (SSMs). Pedestrians' features are generated using computer vision techniques. An LSTM model is used to predict pedestrians' red-light violations using these features. The experiment results at one signalized intersection show that the LSTM model achieves an accuracy of 91.6%. Drivers can be more prepared for these unexpected crossing pedestrians if the model is to be implemented in the vehicle-to-infrastructure (V2I) communication system.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2020

Semester

Spring

Advisor

Abdel-Aty, Mohamed

Degree

Master of Science (M.S.)

College

College of Engineering and Computer Science

Department

Civil, Environmental, and Construction Engineering

Degree Program

Civil Engineering; Smart Cities Track

Format

application/pdf

Identifier

CFE0008066; DP0023205

URL

https://purls.library.ucf.edu/go/DP0023205

Language

English

Release Date

May 2020

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS