Abstract
This dissertation reviews the advancements made in chip-scale optical frequency combs and their applications towards optical communications and optical to RF links. We review different chip-scale comb sources and in particular, chip-scale Kerr microresonator frequency combs. Then, we establish the theoretical background in nonlinear optics which allows the formation and stabilization of Kerr solitons in nonlinear cavities. We also discuss the concept of optical injection locking and in particular, multi-tone injection locking which precedes the idea of regenerative harmonic injection locking. We then go on to show the experimental work involved in soliton generation and characterization. We show efforts towards developing an on-chip massive electronic-photonic optical communications link using Kerr soliton frequency combs as equidistant optical carriers in a DWDM based system using a PAM-4 data modulation format. Potential methods for pushing the limits of communication speeds are also highlighted involving the implementation of other degrees of multiplexing such as space division multiplexing and polarization multiplexing. The second application we explore is based on the synchronization of two pulsed sources via regenerative harmonic injection locking, one with a repetition rate in the microwave regime (10s of GHz) and the other in the mm wave domain (100s of GHz). The two sources we use here are an InP based mode locked laser PIC and the Kerr microresonator. Future goals are discussed which involve techniques for the improvement in long-term stability and chip-scale integrability. This proposal envisions future work to achieve high-capacity optical communication links and optical to RF links utilizing chip-scale Kerr microresonator frequency combs.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2023
Semester
Spring
Advisor
Delfyett, Peter
Degree
Doctor of Philosophy (Ph.D.)
College
College of Optics and Photonics
Department
Optics and Photonics
Degree Program
Optics and Photonics
Format
application/pdf
Identifier
CFE0009599; DP0027623
URL
https://purls.library.ucf.edu/go/DP0027623
Language
English
Release Date
May 2023
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Shirpurkar, Chinmay, "Integrated Frequency Combs for Applications in Optical Communications & Microwave Photonics" (2023). Electronic Theses and Dissertations, 2020-2023. 1656.
https://stars.library.ucf.edu/etd2020/1656