Abstract
The use of data and deep learning algorithms in transportation research have become increasingly popular in recent years. Many studies rely on real-world data. Collecting accurate traffic data is crucial for analyzing traffic safety. Still, traditional traffic data collection methods that rely on loop detectors and radar sensors are limited to collect macro-level data, and it may fail to monitor complex driver behaviors like lane changing and interactions between road users. With the development of new technologies like in-vehicle cameras, Unmanned Aerial Vehicle (UAV), and surveillance cameras, vehicle trajectory data can be collected from the recorded videos for more comprehensive and microscopic traffic safety analysis. This research presents the development, validation, and integration of three AI-driven computer vision systems for vehicle trajectory extraction and traffic safety research: 1) A.R.C.I.S, an automated framework for safety diagnosis utilizing multi-object detection and tracking algorithm for UAV videos. 2)N.M.E.D.S., A new framework with the ability to detect and predict the key points of vehicles and provide more precise vehicle occupying locations for traffic safety analysis. 3)D.V.E.D.S applied deep learning models to extract information related to drivers' visual environment from the Google Street View (GSV) images. Based on the drone video collected and processed by A.R.C.I.S at various locations, CitySim: a new drone recorded vehicle trajectory dataset that aim to facilitate safety research was introduced. CitySim has vehicle interaction trajectories extracted from 1140- minutes of video recordings, which provide a large-scale naturalistic vehicle trajectory that covers a variety of locations, including basic freeway segments, freeway weaving segments, expressway segments, signalized intersections, stop-controlled intersections, and unique intersections without sign/signal control. The advantage of CitySim over other datasets is that it contains more critical safety events in quantity and severity and provides supporting scenarios for safety-oriented research. In addition, CitySim provides digital twin features, including the 3D base maps and signal timings, which enables a more comprehensive testing environment for safety research, such as autonomous vehicle safety. Based on these digital twin features provided by CitySim, we proposed a Digital Twin framework for CV and pedestrian in-the-loop simulation, which is based on Carla-Sumo Co-simulation and Cave automatic virtual environment (CAVE). The proposed framework is expected to guide the future Digital Twin research, and the architecture we build can serve as the testbed for further research and development.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2023
Semester
Spring
Advisor
Abdel-Aty, Mohamed
Degree
Doctor of Philosophy (Ph.D.)
College
College of Engineering and Computer Science
Department
Civil, Environmental, and Construction Engineering
Degree Program
Civil Engineering
Identifier
CFE0009636; DP0027671
URL
https://purls.library.ucf.edu/go/DP0027671
Language
English
Release Date
May 2023
Length of Campus-only Access
None
Access Status
Doctoral Dissertation (Open Access)
STARS Citation
Zheng, Ou, "Development,Validation, and Integration of AI-Driven Computer Vision System and Digital-twin System for Traffic Safety Dignostics" (2023). Electronic Theses and Dissertations, 2020-2023. 1704.
https://stars.library.ucf.edu/etd2020/1704