Abstract

Hurricane evacuation, ordered to save lives of people of coastal regions, generates high traffic demand with increased crash risk. To mitigate such risk, transportation agencies need to anticipate highway locations with high crash risks to deploy appropriate countermeasures. With ubiquitous sensors and communication technologies, it is now possible to retrieve micro-level vehicular data containing individual vehicle trajectory and speed information. Such high-resolution vehicle data, potentially available in real time, can be used to assess prevailing traffic safety conditions. Using vehicle speed and acceleration profiles, potential crash risks can be predicted in real time. Previous studies on real-time crash risk prediction mainly used data from infrastructure-based sensors which may not cover many road segments. In our research, we present methods to determine potential crash risks during hurricane evacuation from an emerging alternative data source known as connected vehicle data. Such data contain vehicle location, speed, and acceleration information collected at a very high frequency (less than 30 seconds). To predict potential crash risks, we utilized a dataset collected during the evacuation period of Hurricane Ida on Interstate-10 (I-10) in the state of Louisiana. Multiple machine learning models were trained considering weather features and different traffic characteristics extracted from the connected vehicle data in 5-minute intervals. The results indicate that the Gaussian Process Boosting (GPBoost) and Extreme Gradient Boosting (XGBoost) models perform better (recall = 0.91) than other models. The real-time connected vehicle data for crash risks assessment will allow traffic managers to efficiently utilize resources to proactively take safety measures.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2023

Semester

Summer

Advisor

Hasan, Samiul

Degree

Master of Science (M.S.)

College

College of Engineering and Computer Science

Department

Civil, Environmental, and Construction Engineering

Degree Program

Civil Engineering; Smart Cities Track

Identifier

CFE0009803; DP0027911

URL

https://purls.library.ucf.edu/go/DP0027911

Language

English

Release Date

August 2023

Length of Campus-only Access

None

Access Status

Masters Thesis (Open Access)

Share

COinS