Abstract
This study investigates the utilization of computational fluid dynamics (CFD) to simulate aerodynamic heating effects in support of research and design endeavors. The initial investigation demonstrates the effectiveness of a computational approach in analyzing different geometries and flow conditions. Specifically, CFD is employed to analyze the aerodynamics of a blunt cone, double cone, and hypersonic leading edge experiencing a changing heat source across the flow/body boundary. At the stagnation point, maximum thermal loading occurs as previously found; therefore, boundary layer thickness and shock standoff distance is measured at that position to compare the results of each case. Characteristics such as temperature and pressure reveal shock and boundary layer distance and how the heat flux shifts the layers away from the body as its added into flow, and narrows the regions as the flow is cooled. For the more complex geometry of the double cone, two shocks are seen in adiabatic flow, but increasing heat flux into the flow pushes the shock layer further from the body until the shocks merge, causing drag reduction across the body; simulating an ablative heat shield that is burning. Overall, designs of a simpler nature are less influenced by heat flux, but more complex designs and regions demand considering heat flux, or even use it to an aerodynamic design advantage.
Notes
If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu
Graduation Date
2023
Semester
Summer
Advisor
Kinzel, Michael
Degree
Master of Science in Aerospace Engineering (M.S.A.E.)
College
College of Engineering and Computer Science
Department
Mechanical and Aerospace Engineering
Degree Program
Aerospace Engineering; Thermofluid Aerodynamic Systems
Identifier
CFE0009769; DP0027877
URL
https://purls.library.ucf.edu/go/DP0027877
Language
English
Release Date
August 2023
Length of Campus-only Access
None
Access Status
Masters Thesis (Open Access)
STARS Citation
Pionessa, Kristina, "A Study of the Influence of Heat Flux on Aerodynamics in Hypersonic Flow" (2023). Electronic Theses and Dissertations, 2020-2023. 1785.
https://stars.library.ucf.edu/etd2020/1785