Abstract

To model and examine the thermal fluid phenomena involved in high-pressure, multi-nozzle spray cooling, a testbed is developed which includes a heating subsystem and an accumulator to pressurize common rail based piezoelectric injectors. Compared to conventional platforms, the implemented testbed allows for an abundance of layout arrangements and settings that provide a greater range of functionality. The volumetric flow rate of the testbed is modeled by a recurrent neural network trained from time-sequential obtained through experiments. The fidelity of the model, as well as the testbed's hardware, software, functionalities, and shortcomings are discussed.

Notes

If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at STARS@ucf.edu

Graduation Date

2023

Semester

Summer

Advisor

Xu, Yunjun

Degree

Master of Science in Aerospace Engineering (M.S.A.E.)

College

College of Engineering and Computer Science

Department

Mechanical and Aerospace Engineering

Degree Program

Aerospace Engineering; Space System Design and Engineering

Identifier

CFE0009725; DP0027832

URL

https://purls.library.ucf.edu/go/DP0027832

Language

English

Release Date

August 2028

Length of Campus-only Access

5 years

Access Status

Masters Thesis (Campus-only Access)

Restricted to the UCF community until August 2028; it will then be open access.

Share

COinS